государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа имени Героя Советского Союза В.И. Суркова с.Владимировка муниципального района Хворостянский Самарской области

РАССМОТРЕНО на педагогическом совете ГБОУ СОШ с.Владимировка Протокол № <u>1</u> от «<u>29</u>»<u>августа</u> 2023 г.

ПРОВЕРЕНО
Заместитель директора по УВР
ГБОУ СОШ с.Владимировка
_____/Назарова Е.П./

«<u>29</u>»августа 2023 г.

«УТВЕРЖДАЮ» директор ГБОУ СОШ с.Владимировка _____/Савкина Е.А./

Приказ № <u>42</u>от «<u>30</u>» <u>августа</u> 2023 г.

РАБОЧАЯ ПРОГРАММА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ «РОБОТОТЕХНИКА» ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Технологической направленности С использованием оборудования «Точка роста»

Программа предназначена для обучающихся 12 - 15 лет.

Пояснительная записка

Реализация данной программы технической направленности предусматривает использование оборудования, средств обучения и воспитания центра «Точка роста».

Рабочая программа внеурочной деятельности «Робототехника» предназначена для начинающих и не требует специальных входных знаний. Занятие программы проводятся со следующими робототехническими наборами: КЛИК (DIGIS), Образовательным набором по электронике, электромеханике и микропроцессорной технике AR-DEK-STR-02, Образовательным комплектом на базе учебного манипулятора DOBOT Magician с системой технического зрения DM-EV-R2, Образовательным робототехническим комплектом «СТЕМ Мастерская» AR-RSK-WRS-02.

Робототехнический набор КЛИК предназначен для изучения основ робототехники, деталей, узлов и механизмов, необходимых для создания робототехнических устройств.

Образовательный набор по электронике, электромеханике и микропроцессорной технике «Конструктор программируемых моделей инженерных систем. Расширенный набор" предназначен для занятий по электронике и схемотехнике с целью изучения наиболее распространенной элементной базы, применяемой для инженерно-технического творчества учащихся и разработки учебных моделей роботов. Набор позволяет проведение учебных занятий по изучению основ мехатроники и робототехники, практического применения базовых элементов электроники и схемотехники, а также наиболее распространенной элементной базы и основных технических решений, применяемых при проектировании и прототипировании различных инженерных, кибернетических и встраиваемых систем.

Образовательный комплект на базе учебного манипулятора DOBOT Magician с системой технического зрения содержит учебный манипулятор DOBOT Magician, представляющий собой многофункциональный настольный манипулятор с комплектом сменных рабочих инструментов, благодаря которым DOBOT Magician обладает возможностью перемещения предметов, трехмерной печати, лазерной гравировки, письма и рисования.

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов "Образовательный робототехнический комплект "СТЕМ Расширенный" предназначен для изучения основ конструирования моделей промышленных манипуляционных роботов различного типа и роботов. автономных мобильных В состав комплекта входят сервомодули, представляющие собой модели промышленных автоматизированных приводов со встроенной системой управления. Применение данного типа сервомодулей позволяет

разрабатывать модели манипуляционных роботов с различными типами кинематической схемы, обладающих высокой точностью и динамикой движения.

Содержание программы направлено на формирование у детей начальных научнотехнических знаний, профессионально-прикладных навыков и создание условий для социального, культурного и профессионального самоопределения, творческой самореализации личности ребенка в окружающем мире.

Актуальность программы. Робототехника является перспективной областью для применения образовательных методик в процессе обучения за счет объединения в себе различных инженерных и естественнонаучных дисциплин. Программа дает возможность обучить детей профессиональным навыкам в области робототехники и предоставляет условия для проведения педагогом профориентационной работы. Кроме того, обучение по данной программе способствует развитию творческой деятельности, конструкторскотехнологического мышления детей, приобщает их к решению конструкторских, художественно-конструкторских и технологических задач.

Основным содержанием данной программы является постепенное усложнение занятий от технического моделирования до сборки и программированию роботов.

Обучающиеся изучают основы робототехники на базе образовательных конструкторов КЛИК, AR-DEK-STR-02, DM-EV-R2, AR-RSK-WRS-02, что дает им возможность создавать оригинальные модели, воплощать свои самые смелые конструкторские идеи, изучать язык программирования.

Принципы построения программы:

- от простого к сложному;
- связь знаний, умений и навыков с практикой;
- научность;
- доступность;
- системность знаний;
- воспитывающая и развивающая направленность;
- активность и самостоятельность;
- учет возрастных и индивидуальных особенностей.

Курс рассчитан на обучающихся 12-15 лет.

Перечень форм обучения: фронтальная, индивидуальная, индивидуально-групповая, групповая

Перечень видов занятий: беседа, лекция, практическое занятие, мастер-класс.

Цель программы: введение в начальное инженерно — техническое конструирование и основы робототехники с использованием робототехнических образовательных конструкторов.

Задачи:

- познакомить школьников с конструктивным и аппаратным обеспечением робототехнических конструкторов;
- дать первоначальные знания о конструкции робототехнических устройств;
- научить приемам сборки и программирования с использованием робототехнических образовательных конструкторов;
- обучить проектированию, сборке и программированию устройства;
- познакомить с профессиями программист, инженер, конструктор;
- способствовать формированию творческого отношения к выполняемой работе;
- воспитывать умение работать в коллективе, эффективно распределять обязанности;
- развивать творческую инициативу и самостоятельность;
- развивать психофизиологические качества обучающихся: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном;
- развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Содержание:

Модуль 1 «Работа с Конструктором для практики блочного программирования КЛИК »

Робототехнический набор предназначен для изучения основ робототехники, деталей, узлов и механизмов, необходимых для создания робототехнических устройств. Набор представляет собой комплект структурных элементов, соединительных элементов и электротехнических компонентов.

Набор позволяет проводить эксперименты по предмету физика, создавать и программировать собираемые модели, из компонентов, входящих в его состав, рабочие модели мобильных и стационарных робототехнических устройств с автоматизированным управлением, в том числе на колесном и гусеничном ходу, а также конструкций, основанных на использовании различных видов передач (в том числе червячных и зубчатых) а также рычагов. Встроенные беспроводные сетевые решения (Wi-Fi и Bluetooth), возможность интеграции с бесплатным облачным ПО, обеспечивают возможность практического изучения технологий интернета вещей и основ искусственного интеллекта. Обеспечивается возможность объединения нескольких

роботов, собранных из подобных наборов, в группы с сетевым взаимодействием. Предусмотрена опциональная возможность расширения дополнительными компонентами (не входящими в стандартную комплектацию), позволяющими изучать техническое зрение и промышленную робототехнику. Предусмотрена возможность работы набора с дополнительными облачными сервисами.

Среды программирования: mBlock, ArduinoIDE Совместимость с ОС: Windows, Mac, Linux (web-версия mBlock)

Цель модуля: изучение образовательного конструктора КЛИК, сборка моделей роботов, практика блочного программирования.

Модуль 2 «Работа с Четырехосевым учебным роботом-манипулятором»

В состав комплекта входит:

Учебный манипулятор DOBOT Magician – 1шт

Комплектация DOBOT Magician

- 1. 4-х осевой образовательный манипулятор
- 2. Захват механический с пневматическим приводом
- 3. Захват вакуумный
- 4. Захват для пишущего инструмента
- 5. Экструдер для 3D-печати
- 6. Лазерный модуль гравировки
- 7. Пульт управления
- 8. Bluetooth-модуль
- 9. Wi-Fi-модуль
- 10. Комплект методических материалов и заданий
- 11. Универсальный робототехнический контроллер 1шт

Универсальный робототехнический контроллер представляет собой устройство, программируемое в среде Arduino IDE. Универсальный робототехнический контроллер предназначен для коммутации внешних устройств, подключаемых к системе управления учебным манипулятором DOBOT Magician.

12. Учебная «смарт»-камера – 1шт

Учебная смарт-камера - модуль технического зрения, представляющий собой вычислительное устройствосо встроенным микропроцессором, интегрированной телекамерой и оптической системой. Смарт-камера применяется в рамках соревнований в области промышленной автоматизации и "Интернет вещей" в качестве одного из смарт-устройств макета производственной ячейки, выполненной на базе учебных манипуляторов.

Модуль является сенсорным устройством для исследования окружающего пространства путем обработки и анализа изображения со встроенной видеокамеры. Смарт-камера предназначена для применения с различными образовательными робототехническими комплектами и может использоваться для создания роботов, способных распознавать и анализировать объекты по ряду признаков - цвету, размеру, форме и т.д.

Учебная смарт-камера имеет встроенное программное обеспечение, позволяющее осуществлять настройку модуля технического зрения - настройку экспозиции, баланса белого, HSV составляющих, площади обнаруживаемой области изображения, округлости обнаруживаемой области изображения, положение обнаруживаемых областей относительно друг друга, машинное обучение параметров нейронных сетей для обнаружения объектов, форму и закодированные значения обнаруживаемых маркеров типа Aruco, размеры обнаруживаемых окружностей, квадратов и треугольников, параметров контрастности, размеров, кривизны и положения распознаваемых линий.

Цель модуля: изучение образовательного комплекта на базе учебного манипулятора DOBOT MAGICIAN, выполнение практических заданий с гравировкой.

Модуль 3 «Работа с набором для изучения многокомпонентных робототехнических систем и манипуляционных роботов»

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов "Образовательный робототехнический комплект "СТЕМ Мастерская". Расширенный" предназначен для изучения основ разработки и

конструирования моделей промышленных манипуляционных роботов различного типа и автономных мобильных роботов. В состав комплекта входят сервомодули, представляющие собой модели промышленных автоматизированных приводов со встроенной системой управления. Применение данного типа сервомодулей позволяет разрабатывать модели манипуляционных роботов с различными типами кинематической схемы, обладающих высокой точностью и динамикой движения.

Образовательный набор для изучения многокомпонентных робототехнических систем и манипуляционных роботов "Образовательный робототехнический комплект "СТЕМ

Мастерская". Расширенный" позволит учащимся на примере собираемых из набора манипуляционных роботов ознакомиться с основными технологическими принципами, применяемыми на современном производстве, и научиться выполнять различные технологические операции с использованием ручных инструментов и специализированного оборудования. Путем использования данного комплекта в проектной деятельности и работе в команде, учащиеся изучат виды технологических операций на производстве, основы проектирования гибких производственных ячеек и разработки систем управления манипуляционными роботами. Также они узнают об инженерных профессиях и специальностях, необходимых на современном производстве и в Индустрии 4.0.

Цель модуля: изучение образовательного набора CTEM Мастерская, сборка и программирование манипуляционных роботов.

Планируемые результаты

1. Личностные результаты:

- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области лего-конструирования и робототехники в условиях развивающегося общества
- готовность к повышению своего образовательного уровня;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств лего-конструирования и робототехники.

2. Метапредметные результаты:

- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственнографическую или знаково-символическую модель;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности.

3. Предметные результаты: знания, умения, владение:

Результаты теоретической подготовки обучающегося:

- знает и может объяснить:
- понятия: «технология», «технологический процесс», «механизм», «проект»,
- правила безопасной работы;
- основные компоненты образовательных конструкторов КЛИК, AR-DEK- STR-02, DM-EV-R2, AR-RSK-WRS-02;
- работу основных механизмов и передач;
- -конструктивные особенности различных моделей, сооружений и механизмов;
- виды подвижных и неподвижных соединений в конструкторе, а также:
- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные знания;
- осуществляет сборку моделей с помощью образовательного конструктора по инструкции,
- демонстрирует полученный опыт разработки оригинальных конструкций в заданной ситуации: нахождение вариантов, отбор решений, проектирование и конструирование, испытание, анализ, способы модернизации, альтернативные решения.
- создавать модели по разработанной схеме;
- работать в паре и коллективе, эффективно распределять обязанности;
- рассказывать о модели;
- излагать мысли в четкой логической последовательности;
- уметь собирать роботов, используя различные датчики.

Материально-техническое обеспечение

- компьютерные столы, а также отдельные столы, для практических работ с конструктором,
- полки для хранения собранных моделей,
- компьютеры с установленным необходимым программным обеспечением;
- проектор + экран, либо интерактивная доска;
- робототехнические образовательные конструкторы КЛИК, AR-DEK-STR-02, DM-EV-R2, AR-RSK-WRS-02
- источники питания,
- МФУ.

Учебный (тематический) план

Содержание курса представлено в составе трех модулей: «Работа с Конструктором для практики блочного программирования КЛИК», «Работа с Четырехосевым учебным роботом-манипулятором», «Работа с набором для изучения многокомпонентных робототехнических систем и манипуляционных роботов».

	Название модуля	Количество часов			Формы
		всего	теория	практика	аттестации/
					контроля
1	Работа с	11	4	7	Презентация
	Конструктором для				работ,
	практики блочного				соревнование
	программирования КЛИК				
2	Работа с Четырехосевым	11	4	7	Презентация
	учебным				работ,
	роботом-манипулятором				соревнование
3	Работа с набором для	12	4	8	Презентация
	изучения многокомпонентных				работ,
	робототехнических систем и				соревнование
	манипуляционных роботов				
		34	12	22	

Тематическое планирование 1 модуля «Работа с Конструктором для практики блочного программирования КЛИК»

№	Название модуля	Количество часов			
		Всего	теория	практика	
1	Конструктивные элементы и комплектующие конструктора КЛИК	1	0,5	0,5	
2	Исполнительные механизмы конструктора КЛИК	2	0,5	1,5	
3	Базовые принципы проктирования роботов. Мобильный робот	2	1	1	
4	Робот-манипулятор	2	0,5	1,5	
5	Сортировщик цвета	1	0,5	0,5	
6	Ультрозвуковой терменвокс	2	0,5	1,5	
7	Копировальщик	1	0,5	0,5	
	Всего:	11	4	7	

«Работа с Четырехосевым учебным роботом-манипулятором»

No	Название модуля	Количество часов			
		Всего	теория	практика	
1	Знакомство с манипулятором DOBOT Мадісіап, дистанционное управление, механический захват	1	0,5	0,5	
2	Дистанционное управление DOBOT Magician. Вакуумный захват. Конвеер DOBOT	2	0,5	1,5	
3	Программное обеспечение DobotStudio.Панель управления DOBOT Magician.Режим управления мышью	2	1	1	
4	Программное обеспечение DobotStudio. Графический режим.	2	0,5	1,5	
5	Программное обеспечение DobotStudio. Лазерная гравировка.	1	0,5	0,5	
6	Перемещение DOBOT Magician по рельсу.	2	0,5	1,5	
7	Простейшее программирование в ПО DobotStudio.	1	0,5	0,5	
	Всего:	11	4	7	

Тематическое планирование 3 модуля «Работа с набором для изучения многокомпонентных робототехнических систем и манипуляционных роботов»

N₂	Название модуля	Количество часов		
		Всего	теория	практика
1	Обзор образовательного комплекта СТЕМ Мастерская. Исполнительные механизмы.	2	2	
2	Практическая работа: Плоскопараллельный манипулятор.	2	0,5	1,5
3	Практическая работа: Угловой манипулятор.	2	0,5	1,5
4	Практическая работа: Манипулятор с DELTA кинематикой.	2	0,5	1.5
5	Практическая работа: Пневмоконтроллер	2	0,5	1,5
6	Практическая работа: Мобильная платформа всенаправленного движения	2	-	2
	Всего:	12	4	8

Формы аттестации и оценочные материалы

Мониторинг результатов обучения включает в себя диагностику знаний обучающихся, их оценку в соответствии с поставленными целями обучения и корректировку ошибок.

Регулярное отслеживание результатов может стать основой стимулирования, поощрения ребенка за его труд, старание.

В ходе реализации программы существует такие способы отслеживания и оценки успеваемости учащихся как:

- 1) Сетка для записи отдельных случаев:
- для каждого учащегося или группы можно использовать сетку категорий наблюдения для следующих целей:
- оценка результатов обучающегося на каждом этапе процесса;
- предоставление конструктивной обратной связи для содействия развитию обучающихся;
- 2) Сетка категорий наблюдения;
- 3) Страницы документации
- 4) Утверждения для самостоятельной оценки своих знаний

Формы аттестации: опрос, контрольные занятия, соревнования, игры.