государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа имени Героя Советского Союза В.И. Суркова с.Владимировка муниципального района Хворостянский Самарской области

2025 г.

ГБОУ СОШ с.Владимировка

 РАССМОТРЕНО
 ПРОВЕРЕНО
 УТВЕРЖДЕНО

 Руководитель МО
 Куратор УР
 Директор школы

 Ваняркина И.И.
 Назарова Е.П.
 Савкина Е.А.

 Протокол № 1 от «29»
 Протокол № 2 от «29»
 Приказ № 72 от «29» августа

августа 2025 г.

августа 2025г.

РАБОЧАЯ ПРОГРАММА
ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ
«РОБОТОТЕХНИКА»
НАЧАЛЬНОЕ ОБЩЕЕ ОБРАЗОВАНИЕ
2-4 классы

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» является программой технической **направленности**.

Актуальность программы заключается в том, что в настоящее время в Самарской области наблюдается повышенный интерес и необходимость в развитии новых технологий, электроники, механики и программирования. Успехи страны в XXI веке определяют не природные ресурсы, а уровень интеллектуального потенциала, который определяется уровнем передовых на сегодняшний день технологий. Уникальность образовательной робототехники заключается в возможности объединить конструирование и что способствует программирование В одном курсе, интегрированию преподавания информатики, математики, физики, черчения, естественных наук с развитием инженерного мышления, через техническое творчество. Техническое творчество — мощный инструмент синтеза знаний, закладывающий прочные основы системного мышления. Таким образом, инженерное творчество и лабораторные исследования — многогранная деятельность, которая должна стать составной частью повседневной жизни каждого обучающегося.

Отличительные особенности программы.

Программа «Практическая робототехника на основе робототехнического набора КЛИК» рассчитана на 34 занятия, которые разбиты на 4 раздела (модуля):

- Вводное занятие, знакомство с конструктором.
- Среды программирования: mBlock, ArduinoIDE.
- Конструирование по инструкции.
- Проект.

Каждый раздел обучения представлен как этап работы связанный с

конструированием, программированием, практической задачей.

Содержание программы ориентирует обучающихся на постоянное взаимодействие друг с другом и преподавателем, решение практических (конструкторских) проблем осуществляется методом проб и ошибок и требует постоянного улучшения и перестройки роботизированных моделей для оптимального решения поставленной практической задачи. Также программа ориентирует обучающихся на самостоятельное обучение, с использованием полученных знаний в рамках практической деятельности.

Программа дает возможность раскрыть любую тему нетрадиционно, с необычной точки зрения, взглянуть на решение классической практической задачи под новым углом для достижения максимального результата.

Адресат программы.

Программа предназначена для детей от 8 до 11 лет.

В группы принимаются обучающиеся 2-4 классов. Группа может состоять из детей одного возраста или может быть разновозрастной.

Так как программа разделена на модули и предполагает большое количество практической работы предполагается формирование мини-групп для достижения максимального результата. По причине наличия в программе завершающего (4) модуля, ориентированного на реализацию собственного проекта, предполагается выход на участие обучающихся с собственным проектом в конференциях и профильных мероприятиях всех уровней.

Объем и срок освоения программы.

Срок освоения программы – 34 часа.

Форма обучения – очная, работа в мини-группах.

Режим занятий, периодичность и продолжительность занятий.

Продолжительность занятий исчисляется в академических часах — 40 минут, между занятиями установлены 10-минутные перемены.

Педагогическая целесообразность.

Педагогическая целесообразность этой программы заключается в том, что, она является целостной и непрерывной в течении всего процесса обучения, и позволяет школьнику шаг за шагом раскрывать в себе творческие возможности и само реализоваться в современном мире. В процессе конструирования и программирования дети получат дополнительное образование в области информатики, математики. Очень важным представляется тренировка работы в коллективе и развитие самостоятельного технического творчества в рамках практической работы.

Практическая значимость.

Программа разработана на основе модульного подхода и предусматривает три уровня сложности: стартовый (ознакомительный), базовый, продвинутый (творческий).

Первый раздел (8 занятий) — стартовый уровень (ознакомительный), где обучающиеся знакомятся с базовыми физическими принципами конструирования роботов, элементами конструктора.

Второй раздел (8 занятий) – базовый уровень, где обучающиеся знакомятся с конструктором, средами программирования.

Третий раздел (8 занятий) — профильный уровень, где обучающиеся пробуют решать стандартные робототехнические и конструкторские задачи, с помощью инструкции.

Четвертый раздел (10 занятий) – продвинутый уровень (творческий). Этот уровень позволит обучающимся развить умение применять полученные ранее знания и навыки в рамках проектной деятельности, самостоятельно выбирать и выполнять проектные работы.

Возрастные особенности обучающихся.

Программа рассчитана на детей одного уровня подготовки возрастом от 8 до11 лет.

Задача педагога доверять обучающемуся решение посильных для него вопросов, уважать его мнение. Общение предпочтительнее строить не в форме прямых распоряжений и назиданий, а в форме проблемных вопросов. У обучающегося появляется умение ставить перед собой и решать задачи, самостоятельно мыслить и трудиться. Совместная деятельность для обучающихся этого возраста привлекательна как пространство для общения.

Учет возрастных особенностей детей, занимающихся по образовательной программе является одним из главных педагогических принципов.

Цель программы: формирование представлений о технологической культуре производства, развитие культуры труда подрастающих поколений, освоение технических и технологических знаний и умений, ознакомление обучающихся с конструированием, программированием, использованием устройств, роботизированных основными технологическими процессами современного производства, обучающихся подготовка К участию конференциях и робототехнических соревнованиях.

Задачи дополнительной общеразвивающей программы:

Образовательные:

- формирование навыков конструирования моделей роботов.
- знакомство с принципом работы и конструированием робототехнических устройств;
- формирование навыков составления алгоритмов и методов решенияорганизационных и технико-технологических задач;
- формирование навыков использования общенаучных знаний по предметам естественно-математического цикла в процессе подготовки и осуществления технологических процессов для обоснования и аргументации рациональности деятельности в рамках проектной деятельности;

Развивающие:

- способствовать развитию творческих способностей каждого ребенкана основе личностно-ориентированного подхода;
- развить интерес к робототехнике;
- развитие творческого потенциала и самостоятельности в рамкахмини-группы;
- развитие психофизических качеств, обучающихся: память, внимание, аналитические способности, концентрацию и т.д.

Воспитательные:

• формирование ответственного подхода к решению задач различной

сложности;

формирование навыков коммуникации среди участников программы;

формирование навыков командной работы.

Принципы отбора содержания.

Образовательный процесс строится с учетом следующих принципов:

- 1. Культуросообразности и природосообразности. В программе учитываются возрастные и индивидуальные особенности детей.
- 2. Системности. Полученные знания, умения и навыки, обучающиеся системно применяют на практике, создавая проектную работу. Это позволяет использовать знания и умения в единстве, целостности, реализуя собственный замысел, что способствует самовыражению ребенка, развитию его творческого потенциала.

- 3. Комплексности и последовательности. Реализация этого принципа предполагает постепенное введение обучающихся в мир робототехники и автоматизации устройств.
- 4. Наглядности. Использование наглядности повышает внимание обучающихся, углубляет их интерес к изучаемому материалу, способствует развитию внимания, воображения, наблюдательности, мышления.

Основные формы и методы.

В ходе реализации программы используются следующие формы обучения:

По охвату детей: групповые, коллективные.

По характеру учебной деятельности:

- беседы (вопросно-ответный метод активного взаимодействия педагога и обучающихся на занятиях, используется в теоретической частизанятия);
- защита проекта (используется на творческих отчетах, фестивалях, конкурсах, как итог проделанной работы);
- конкурсы и фестивали (форма итогового, иногда текущего) контроля проводится с целью определения уровня усвоения содержания образования, степени подготовленности к самостоятельной работе, выявления наиболее способных и талантливых детей);
- практические занятия (проводятся после изучения теоретических основ с целью отработки практических умений и изготовления роботов);
- наблюдение (применяется при изучении какого-либо объекта, предметов, явлений).

На занятиях создается атмосфера доброжелательности, доверия, что во многом помогает развитию творчества и инициативы ребенка. Выполнение творческих заданий помогает ребенку в приобретении устойчивых навыков работы с различными материалами и инструментами. Участие детей в выставках, фестивалях, конкурсах разных уровней является основной формой контроля усвоения программы обучения и диагностики степени освоения практических навыков ребенка.

Методы обучения.

- В процессе реализации программы используются различные методы обучения.
- 1. Методы организации и осуществления учебно-познавательной деятельности:

словесные (рассказ; лекция; семинар; беседа; речеваяинструкция; устное изложение; объяснение нового материала и способов выполнения задания; объяснение последовательности действий и содержания; обсуждение; педагогическая оценка процесса деятельности и ее результата);

- наглядные (показ видеоматериалов и иллюстраций, показ педагогом приёмов исполнения, показ по образцу, демонстрация, наблюдения за предметами и явлениями окружающего мира, рассматривание фотографий, слайдов);
- практически-действенные (упражнения на развитие моторики пальцев рук (пальчиковая гимнастика, физкультминутки; воспитывающие и игровые ситуации; ручной труд, изобразительная и художественная

деятельность; тренинги);

- проблемно-поисковые проблемной ситуации, коллективное обсуждение, выводы);
- методы самостоятельной работы и работы под руководствомпедагога (создание творческих проектов);
- информационные (беседа, рассказ, сообщение, объяснение, инструктаж, консультирование, использование средств массовой информации литературы и искусства, анализ различных носителей информации, в том числе Интернетсети, демонстрация, экспертиза, обзор,отчет, иллюстрация, кинопоказ)

побудительно-оценочные (педагогическое требование и поощрение порицание и создание ситуации успеха; самостоятельная работа).

- 2. Методы контроля и самоконтроля за эффективностью учебно- познавательной деятельности:
 - устный контроль и самоконтроль (беседа, рассказ ученика, объяснение, устный опрос);
 - практический контроль и самоконтроль (анализ умения работать с различными художественными материалами);
 - наблюдения (изучение обучающихся в процессе обучения).

Выбор метода обучения зависит от содержания занятий, уровня подготовленности и опыта обучающихся. Информационно-рецептивный метод применяется на теоретических занятиях. Репродуктивный метод обучения используется на практических занятиях по отработке приёмов и навыков определённого вида работ. Исследовательский метод применяется в работе над тематическими творческими проектами.

Для создания комфортного психологического климата на занятиях применяются следующие педагогические приёмы: создание ситуации успеха, моральная поддержка, одобрение, похвала, поощрение, доверие, доброжелательно-требовательная манера.

В ходе реализации программы используются следующие типы занятий:

- комбинированное (совмещение теоретической и практической частей занятия; проверка знаний ранее изученного материала; изложение нового материала, закрепление новых знаний, формирование умений переноса и применения знаний в новой ситуации, на практике; отработка навыков и умений, необходимых при изготовлении продуктов творческого труда);
- теоретическое (сообщение и усвоение новых знаний при объясненииновой темы, изложение нового материала, основных понятий, определение терминов, совершенствование и закрепление знаний);
- диагностическое (проводится для определения возможностей и способностей ребенка, уровня полученных знаний, умений, навыков с использованием тестирования, анкетирования, собеседования, выполнения конкурсных и творческих заданий);
- контрольное (проводится в целях контроля и проверки знаний, умений и навыков обучающегося через самостоятельную и контрольную работу, индивидуальное собеседование, зачет, анализ полученных результатов. Контрольные занятия проводятся, как правило, в рамках аттестации обучающихся (по пройденной теме, в начале учебного года, по окончании первого полугодия и в конце учебного года);
- практическое (является основным типом занятий, используемых в программе, как правило, содержит повторение, обобщение и усвоение полученных знаний, формирование умений и навыков, их осмысление и закрепление на практике при выполнении изделий и моделей, инструктаж при выполнении практических работ, использование всех видов практик);
- вводное занятие (проводится в начале учебного года с целью знакомства с образовательной программой, составление индивидуальной траектории обучения; а также при введении в новую тему программы);
- итоговое занятие (проводится после изучения большой темы)

Планируемые результаты.

По итогам обучения по программе ребенок демонстрирует следующие результаты:

• знает принципы построения конструкции робота КЛИК;

- правила техники безопасности при работе роботехническим набором КЛИК;
- умеет разрабатывать уникальные конструкции для робототехнических задач;
- обладает навыками программирования.

Механизм оценивания образовательных результатов.

Уровень теоретических знаний.

Низкий уровень. Обучающийся знает фрагментарно изученный материал. Изложение материала сбивчивое, требующее корректировки наводящими вопросами.

Средний уровень. Обучающийся знает изученный материал, но для полного раскрытия темы требуются дополнительные вопросы.

Высокий уровень. Обучающийся знает изученный материал. Может дать логически выдержанный ответ, демонстрирующий полное владение материалом.

Уровень практических навыков и умений. Владение технологиями проектирования, конструирования и программирования робота.

Низкий уровень. Требуется помощь педагога при сборке и программировании.

Средний уровень. Требуется периодическое напоминание о том, какие технологии и методы при проектировании и сборки необходимоприменять.

Высокий уровень. Самостоятельный выбор технологии конструкции, языка и типа программы.

Способность создания изделий из составных частей набора.

Низкий уровень. Не может создать изделие без помощи педагога.

Средний уровень. Может создать изделие при подсказке педагога.

Высокий уровень. Способен самостоятельно создать изделие, проявляя творческие способности.

Формы подведения итогов реализации программы.

Отслеживание результатов образовательного процесса осуществляется по результатам выполнения проекта.

При подведении итогов освоения программы используются:

- опрос;
- наблюдение;
- анализ, самоанализ,

- собеседование;
- выполнение творческих заданий; презентации;
- участие детей в выставках, конкурсах и фестивалях различного уровня, согласно учебному плану и учебно-тематическому плану.

Тематическое планирование

Данная программа предполагает постепенное знакомство обучающихся с элементной базой конструктора, способами программирования и конструирования роботов.

Раздел	Тема	Кол-во часов			Форма подведения
		теория	практика	всего	итогов
Вводное занятие, знакомство с конструктором. (с использованием констуктора КЛИК)	1. Вводное занятие: Материалы и инструменты, используемые для работы.	2	0	2	Опрос
	2. Физические принципы построения роботов.	1	1	2	Опрос
	3. Конструкции и разновидности роботов.	2	0	2	Опрос
Среды программирования: mBlock, ArduinoIDE	1. Знакомство со средой программирования mBlock	1	0	1	Опрос
	2. Знакомство со средой программирования ArduinoIDE	1	1	2	Опрос
	3. Знакомство со средой программирования mBlock	1	2	3	Просмотр
	4. Знакомство со средой программирования ArduinoIDE	1	2	3	Просмотр
Конструирование по инструкции. (с использованием констуктора КЛИК)	1. Изучение видов моделей по инструкции	1	2	3	Опрос
	2. Варианты построения роботов	1	2	3	Просмотр
	3. Построение робота по схеме	0	2	2	Просмотр
	4. Перемещение робота в пространстве	0	2	2	Просмотр
Проект. (с использованием констуктора КЛИК)	Соревновательный робот.	1	2	3	опрос
	2. Построение 3d-модели. Конструирование модели.	0	2	2	Просмотр

3. Программирование.	1	2	3	Просмотр
4. Подготовка и защита	0	1	1	Зачет
проекта				
Всего	13	21	34	

СОДЕРЖАНИЕ ПРОГРАММЫ

Раздел «Вводное занятие, знакомство с конструктором».

Тема 1. Вводное занятие: Материалы и инструменты, используемые для работы.

Теория: Принципы и варианты построения роботов. Рассматриваются разновидности существующих робототехнических конструкторов. Рассматриваются инструменты для работы, правила и способы соединения.

Формы занятий: лекция, беседа.

Тема 2. Физические принципы построения роботов.

Теория: Основные элементы конструктора, способы соединения.

Практика: сборка базовых элементов.

Формы занятий: беседа, практическое занятие.

Тема 3. Конструкции и разновидности роботов.

Теория: Разновидности подвижных роботов.

Формы занятий: лекция, беседа

Раздел «Среды программирования: mBlock, ArduinoIDE».

Тема 1. Первая программа. Знакомство со средой программирования в В

Теория: Запуск первых программ.

Практика: установка и настройка ПО, загрузка и установка драйверов, библиотек.

Формы занятий: Лекция.

Тема 2. Знакомство со средой программирования ArduinoIDE

Теория: Запуск программы ArduinoIDE

Практика: установка и настройка ПО, загрузка и установка драйверов, библиотек.

Формы занятий: лекция.

Тема 3. Знакомство со средой программирования mBlock. Практическая часть.

Теория: Запуск программы.

Практика: установка и настройка ПО, загрузка и установка драйверов, библиотек.

Формы занятий: практическое занятие.

Tema 4. Знакомство со средой программирования ArduinoIDE

Теория: Запуск программы.

Практика: установка и настройка ПО, загрузка и установка драйверов, библиотек.

Формы занятий: практическое занятие.

Раздел «Универсальная платформа исследовательских задач» Тема

1. Элементная база набора. Стандартная платформа.

Теория: Стандартная двухмоторная платформа

Практика: сборка классической двухмоторной платформы, проезд по линии и вдоль стены.

Формы занятий: практическое занятие.

Тема 2. Варианты построения манипулятора. Захват объекта. Теория:

Варианты манипуляционных роботов. Механизмы захвата.

Практика: сборка классической двухмоторной платформы с манипулятором. Пробное перемещение объектов.

Формы занятий: практическое занятие.

Тема 3. Модуль технического зрения.

Теория: Модуль технического зрения TrackingCam. ПО и библиотеки. Интеграция с классическими сборками роботов.

Практика: сборка классической двухмоторной платформы с манипулятором и модулем технического зрение. Обнаружение объектов.

Формы занятий: практическое занятие.

Тема 4. Перемещение робота в пространстве

Практика: сборка выбранной модели по инструкции, программирование робота, перемещение объекта в пространстве.

Формы занятия: практическое занятие.

Раздел «Проект»

Тема 1. Тематика проекта. Соревновательный робот. Проектная робототехника. Различие роботов.

Формы занятия: практическое занятие, проектная деятельность.

Тема 2. Построение 3d-модели. Конструирование модели. Формы занятия: практическое занятие, проектная деятельность.

Тема 3. Программирование.

Формы занятия: практическое занятие, проектная деятельность.

Тема 4. Подготовка и защита проекта.

Практика: Защита проектов.

Формы занятий: проектная деятельность, зачет.

Организационно-педагогические условия реализации программы.

Педагог дополнительного образования, реализующий данную программу, должен иметь высшее профессиональное образование или среднее профессиональное образование в области, соответствующей профилю кружка, без предъявления требований к стажу работы, либо высшее профессиональное образование или среднее профессиональное образование и дополнительное профессиональное образование и педагогика» без предъявления требований к стажу работы.

Материально-техническое обеспечение.

Оборудование - робототехнического набора КЛИК, компьютер с предустановленным ПО: операционная система, Arduino IDE, Make block IDE.

Организация рабочего пространства ребенка осуществляется с использованием здоровьесберегающих технологий. В ходе занятия в обязательном порядке проводится физкультпаузы, направленные на снятие общего и локального мышечного напряжения. В содержание физкультурных минуток включаются упражнения на снятие зрительного и слухового напряжения, напряжения мышц туловища и мелких мышц кистей, на восстановление умственной работоспособности.

Мотивационные условия.

На учебных занятиях и массовых мероприятиях особое место уделяется формированию мотивации обучающихся к занятию дополнительным образованием. Для этого:

• удовлетворяются разнообразные потребности обучающихся: в создании комфортного психологического климата, в отдыхе, общении и защите,принадлежности к детскому объединению, в самовыражении, творческой самореализации, в признании и успехе;

- дети включаются в практический вид деятельности при групповойработе, с учетом возрастных особенностей и уровнем сохранности здоровья;
- занятиях решаются задачи проблемного на характера посредствомвключения в проектную деятельность;
- проводятся профессиональные пробы и другие мероприятия, способствующие профессиональному самоопределению обучающихся.

Методические материалы.

Методическое обеспечение программы включает приёмы и методы организации образовательного процесса, дидактические материалы, техническое оснащение занятий.

Для обеспечения наглядности и доступности изучаемого материала педагог использует различные методические и дидактические материалы. Наглядные пособия:

- (готовые образцы, • схематические изделия, схемы, технологические и инструкционные карты, выкройки, чертежи, схемы, шаблоны);
- естественные и натуральные (образцы материалов); объемные (макеты, образцы изделий);
- иллюстрации, слайды, фотографии и рисунки готовых изделий; звуковые (аудиозаписи).

Дидактические материалы.

Методическая продукция:

Методические разработки, рекомендации, пособия, описания, инструкции, аннотации.

Информационное обеспечение программы.

Интернет-ресурсы:

Учебные пособия инструкции. И https://fgoskomplekt.ru/catalog/robototekhnika_i_3d_printery/osnovnaya_shkola_nab ory_robototekhniki_dlya_5_11_klassa/robototekhnicheskij-nabor-klik/

Список литературы:

Нормативные правовые акты

Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № 273-Ф3.

Указ Президента Российской Федерации «О мерах по реализации государственной политики в области образования и науки» от 07.05.2012 № 599.

Указ Президента Российской Федерации «О мероприятиях по реализации государственной социальной политики» от 07.05.2012 № 597.

Распоряжение Правительства РФ от 30 декабря 2012 г. №2620-р. Проект межведомственной программы развития дополнительного образования детей в Российской Федерации до 2020 года.

Приказ Министерства просвещения РФ от 09.11.2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательнымпрограммам».

Постановление Главного государственного санитарного врача РФ от 04.07.2014 N 41 «Об утверждении СанПиН 2.4.4.3172-14 «Санитарноэпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей».

Для педагога дополнительного образования:

Саймон Монк. Программируем Arduino. Питер, 2017 Мобильные роботы на базе Arduino. Момот М.В. БХВ-Петербург, 2017.

Для обучающихся и родителей:

Джереми Блум. Изучаем Arduino- инструменты и методы технического волшебства. М., 2015.