Рабочая программа по физике для 10 -11 класса (базовый уровень)

Пояснительная записка

Программа составлена на основе федерального компонента Государственного стандарта среднего общего образования, опираясь на авторскую программу Г.Я. Мякишева (Программы общеобразовательных учреждений. Физика. 10-11 классы / П.Г. Саенко, В.С. Данюшенков, О.В. Коршунова и др. – М.: Просвещение, 2018). Преподавание физики в 10 – 11 классах базируется на использование учебных пособий

- -Учебник «Физика 10 класс» Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский; М.:Просвещение, 2018
- -Учебник «Физика 11 класс» Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский; М.:Просвещение, 2019

Изучение физики на базовом уровне направлено на достижение следующих целей:

- формирование у обучающихся умения видеть и понимать ценность образования, значимость физического знания для каждого человека; умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- формирование у обучающихся целостного представления о мире и роли физики в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого физические знания;
- приобретение обучающимися опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности, навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, эффективного и безопасного использования различных технических устройств;
- овладение системой научных знаний о физических свойствах окружающего мира, об основных физических законах и о способах их использования в практической жизни.

Место предмета в учебном плане.

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит в 10 – 11 классах по 68 учебных часов из расчета 2 учебных часов в неделю. При 2 часовом варианте преподавания и значительным содержанием учебного материала следует опираться на следующие идеи:

- -выделение ядра фундаментальных знаний за счет генерализации в виде физических теорий и применения принципа цикличности;
- -сохранение большей части лабораторных работ;
- -совмещение этапов обобщения, контроля и корректировки учебных достижений обучающихся, приобретение процессом контроля интегративной функции;
 - -использовать блочно модульное изучение разделов содержания.

Особенность программы заключается в том, что объединено изучение двух разделов «Механические колебания и волны» и «Электрические колебания и волны» в 11классе (раздел «Механические колебания и волны» изучался в 9 классе). В результате облегчается изучение первого раздела «Механика» в 10 классе и демонстрируется еще один аспект единства природы при изучении этих разделов в 11 классе.

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе среднего общего образования являются:

Познавательная деятельность:

- -использование для познания окружающего мира различных естественно-научных методов: наблюдения, измерения, эксперимента, моделирования;
 - -формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
 - -овладение адекватными способами решения теоретических и экспериментальных задач;
- -приобретение опыта выдвижения гипотез для объяснения известных фактов и для экспериментальной проверки выдвигаемых гипотез.

Информационно- коммуникативная деятельность:

-владение монологической и диалогической речью, способность понимать точку зрения собеседника и признавать право на иное мнение;

-использование для решения познавательных задач и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

- -владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий;
- -организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средства.

Реализация учебной программы строится с учетом личного опыта обучающегося на основе информационного подхода в обучении, предполагающей использование личностно – ориентированной, проблемно – поисковой и исследовательской учебной деятельности

.Решение основных учебно-воспитательных задач достигается на уроках сочетанием технологии традиционного обучения с разнообразием других форм и методов обучения. Это в основном технологии развивающего обучения: проблемное, блочно-модульное, компьютерные технологии, тестовые. Используемые технологии, во - первых направлены на восполнение пробелов в знаниях обучающихся, периодически отсутствующих на спортивных сборах. Во- вторых на уроках физики в 10-11 классах, где большой объем материала и недостаточное количество часов, особенно эффективно использовать блочно модульные и информационно компьютерные технологии. Блочно модульное обучение позволяет:

- -осуществить дифференцированный подход в обучении;
- -дает возможность использования различных видов деятельности (индивидуальное, в парах, в группах);
- -способствует накоплению материала к выпускным экзаменам, подготовке к ЕГЭ (ВПР), повышению мотивации к изучению физики, развитию надпредметных способов учебной деятельности.

Модули позволяют перевести обучение на субъект – субъектную основу, индивидуализировать работу с отдельными обучающимися, дозировать индивидуальную помощь, изменить форму общения учителя и школьника.

Информационно компьютерные технологии реализуют на практике принцип наглядности, вызывают неподдельный интерес обучающихся к предмету, дают возможность обеспечения деятельностного подхода.

Использование ИКТ на уроке позволяет:

- -сделать обучение выше по качеству насыщения и уровню подачи информации;
- -осуществлять тесное взаимодействие педагога и школьника;
- -научить школьников ориентироваться в информационном пространстве, самостоятельно конструировать свои знания;
- -интенсифицировать процесс обучения;
- -индивидуализировать процесс обучения;

Формы аттестации школьников.

Аттестация школьников, проводимая в системе, позволяет, наряду с формирующим контролем предметных знаний, проводить мониторинг универсальных и предметных учебных действий.

Рабочая программа предусматривает следующие формы аттестации школьников:

- 1. Промежуточная аттестация 10 класс.
- 2. Итоговая аттестация 11 класс. ЕГЭ.

Домашнее задание дифференцируется по объему и сложности с учетом индивидуальных особенностей школьников.

Формирование ключевых компетенций.

общеобразовательных:

- умения самостоятельно и мотивированно организовать свою познавательную деятельность;
- умения использовать элементы причинно-следственного анализа, определять сущностные характеристики изучаемого объекта, давать определения, приводить доказательства;

- умения использовать мультимедийные ресурсы и компьютерные технологии для обработки, передачи, презентации результатов познавательной и практической деятельности;
- умения оценивать и корректировать свое поведение в окружающей среде, выполнять экологические требования в практической и повседневной жизни.

предметно-ориентированных:

- понимать возрастающую роль науки, усиление взаимосвязи и взаимного влияния науки и техники, осознавать взаимодействие человека с окружающей средой, возможности и способы охраны природы;
- развивать познавательные интересы в процессе самостоятельного приобретения физических знаний с использованием различных источников информации, в том числе компьютерных;
- воспитывать убежденность в позитивной роли физики в жизни современного общества, овладевать умениями применять полученные знания для объяснения разнообразных физических явлений;

Применять полученные знания и умения для безопасного использования механизмов в быту, на производстве, решения задач в повседневной жизни.

Требования к уровню подготовки учеников 10-11 классов.

В результате изучения физики в 10- классе ученик должен:

знать/понимать

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная.
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд.
- смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта.
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики.

уметь

• описывать и объяснять:

физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, тепловое действие тока;

физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел;

результаты экспериментов: независимость ускорения свободного падения от массы падающего тела; нагревание газа при его быстром сжатии и охлаждение при быстром расширении; повышение давления газа при его нагревании в закрытом сосуде; броуновское движение; электризацию тел при их контакте; зависимость сопротивления полупроводников от температуры и освещения;

описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;

- приводить примеры практического применения физических знаний законов механики, термодинамики и электродинамики в энергетике;
- определять характер физического процесса по графику, таблице, формуле;
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры опытов, иллюстрирующих, что наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;
- измерять расстояние, промежутки времени, массу, силу, давление, температуру, влажность воздуха, силу тока, напряжение, электрическое сопротивление, работу и мощность электрического тока; скорость, ускорение свободного падения; плотность вещества, работу, мощность, энергию, коэффициент трения скольжения, удельную теплоемкость вещества, удельную теплоту плавления льда, ЭДС и внутреннее сопротивление источника тока; представлять результаты измерений с учетом их погрешностей;

• применять полученные знания для решения физических задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и охраны окружающей среды;

определения собственной позиции по отношению к экологическим проблемам и поведению в природной среде.

Результаты освоения курса физики

Личностные результаты:

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметные результаты:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т.д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике;
- использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

Предметные результаты (на базовом уровне):

- 1) в познавательной сфере:
 - давать определения изученным понятиям;
 - называть основные положения изученных теорий и гипотез;

- описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык физики;
- классифицировать изученные объекты и явления;
- делать выводы и умозаключения из наблюдений, изученных физических закономерностей, прогнозировать возможные результаты;
- структурировать изученный материал;
- интерпретировать физическую информацию, полученную из других источников;
- применять приобретенные знания по физике для решения практических задач, встречающихся в повседневной жизни, для безопасного использования бытовых технических устройств, рационального природопользования и охраны окружающей среды;
- 2) в ценностно-ориентационной сфере анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием физических процессов;
- 3) в трудовой сфере проводить физический эксперимент;
- 4) в сфере физической культуры оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.

Основное содержание программы для 10 кл.

Программой предусмотрено изучение разделов:

1.	Физика и методы научного познания	1 час
2. 2.1.	Механика Кинематика	24 часа 9 часов
2.2.	Динамика	8 часов
2.3.	Законы сохранения	7 часов

3. 3.1.	Молекулярная физика. Термодинамика Основы молекулярно-кинетической теории	20 часов 6 часов
3.2.	Температура. Энергия теплового движения молекул	2 часа
3.3.	Уравнение состояния идеального газа. Газовые законы	2 часа
3.4.	Взаимные превращения жидкостей и газов. Твердые тела	3 часа
3.5.	Основы термодинамики	7 часов
4. 4.1.	Основы электродинамики Электростатика	22 часа 9 часов
4.2.	Законы постоянного тока	8 часов
4.3.	Электрический ток в различных средах	5 часов
5.	Резервное время	1 час

По программе за год учащиеся должны выполнить 4 контрольные работы и 4 лабораторные работы.

Научный метод познания природы

Физика – фундаментальная наука о природе. Научный метод познания.

Методы научного исследования физических явлений. Эксперимент и теория в процессе познания природы. Погрешности измерения физических величин. Научные гипотезы. Модели физических явлений. Физические законы и теории. Границы применимости физических законов. Физическая картина мира. Открытия в физике – основа прогресса в технике и технологии производства.

Механика

Системы отсчета. Скалярные и векторные физические величины. Механическое движение и его виды. Относительность механического движения. Мгновенная скорость. Ускорение. Равноускоренное движение. Движение по окружности с постоянной по модулю скоростью. Принцип относительности Галилея.

Масса и сила. Законы динамики. Способы измерения сил. Инерциальные системы отсчета. Закон всемирного тяготения.

Закон сохранения импульса. Кинетическая энергия и работа. Потенциальная энергия тела в гравитационном поле. Потенциальная энергия упруго деформированного тела. Закон сохранения механической энергии.

Демонстрации

- 1. Зависимость траектории от выбора отсчета.
- 2. Падение тел в воздухе и в вакууме.
- 3. Явление инерции.
- 4. Измерение сил.
- 5. Сложение сил.
- 6. Зависимость силы упругости от деформации.
- 7. Реактивное движение.
- 8. Переход потенциальной энергии в кинетическую и обратно.

Лабораторные работы

Изучение закона сохранения механической энергии.

Молекулярная физика

Молекулярно – кинетическая теория строения вещества и ее экспериментальные основания.

Абсолютная температура. Уравнение состояния идеального газа.

Связь средней кинетической энергии теплового движения молекул с абсолютной температурой.

Строение жидкостей и твердых тел.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Принципы действия тепловых машин. Проблемы теплоэнергетики и охрана окружающей среды.

Демонстрации

- 1. Механическая модель броуновского движения.
- 2. Изменение давления газа с изменением температуры при постоянном объеме.
- 3. Изменение объема газа с изменением температуры при постоянном давлении.
- 4. Изменение объема газа с изменением давления при постоянной температуре.
- 5. Устройство гигрометра и психрометра.
- 6. Кристаллические и аморфные тела.
- 7. Модели тепловых двигателей.

Лабораторные работы

Опытная проверка закона Гей-Люссака.

Электродинамика

Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Разность потенциалов. Источники постоянного тока. Электродвижущая сила. Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Полупроводники.

Демонстрации

- 1. Электризация тел.
- 2. Электрометр.
- 3. Энергия заряженного конденсатора.
- 4. Электроизмерительные приборы.

Лабораторные работы

- 1. Изучение последовательного и параллельного соединения проводников.
- 2. Измерение ЭДС и внутреннего сопротивления источника тока.

Календарно тематическое планирование по физике в 10 классе

№ урока	Дата	Тема урока	Код элемента содержа- ния (КЭС)	Элемент содержания	Код требования к уровню подготовки выпускни- ков (КПУ)	Требования к уровню подготовки	Домашнее задание
		Введение (1 ч)					
1	1.09	Физика и познание мира	1.1.1 1.1.2	Что такое научный метод познания? Что и как изучает физика. Границы применимости физических законов. Современная картина мира. Использование физических знаний и методов.	1.1; 2.5.1- 2.5.2, 3.1	Знать смысл понятий: физическое явление, гипотеза, закон, теория, взаимодействие; вклад российских и зарубежных учёных в развитие физики. Уметь отличать гипотезы от научных теорий; уметь приводить примеры, показывающие, что наблюдения и эксперимент являются основой для выдвижения гипотез и теорий	Введение
		Механика (24 ч)				P	
		Кинематика (9ч)					
		Глава 1. Кинематика точки и твёрдого тела					
2	6.09	Механическое движение. Система отсчёта.	1.1.1-1.1.6	Основная задача механики. Кинематика. Система отсчёта. Механическое движение, его виды и относительность	1.1-1.2; 2.1.1- 2.1.2; 2.2; 2.4; 2.5.3; 2.6	Знать различные виды механического движения; знать/понимать смысл поняти «система отсчета», смысл физических величин: скорость, ускорение, масса.	§ 1

3	8.09	Траектория. Путь. Перемещение.	1.1.1-1.1.5	Прямолинейное равномерное движение. Скорость равномерного движения. Путь, перемещение, координата при равномерном движении.	1.1-1.2; 2.1.1- 2.1.2; 2.2; 2.4; 2.5.3; 2.6	Знать физический смысл понятия скорости; законы равномерного прямолинейного движения.	§ 3
4	13.09	Равномерное прямолинейное движение. Скорость. Уравнение движения.	1.1.1 1.1.31.1.5	Прямолинейное равномерное движение. Скорость равномерного движения. Путь, перемещение, координата при равномерном движении.	1.1-1.2; 2.1.1- 2.1.2; 2.2; 2.4; 2.5.3; 2.6	Уметь строить и читать графики равномерного прямолинейного движения.	§ 4
5	15.09	Мгновенная и средняя скорости.	1.1.1-1.1.4	Мгновенная скорость. Средняя скорость. Векторные величины и их проекции. Сложение скоростей.	1.1-1.2; 2.1.1- 2.1.2; 2.2; 2.4; 2.5.3; 2.6	Знать физический смысл понятия скорости; средней скорости, мгновенной скорости. Знать/понимать закон сложения скоростей. Уметь использовать закон сложения скоростей при решении задач.	§ 8
6	20.09	Ускорение. Движение с постоянным ускорением.	1.1.3- 1.1.41.1.6	Ускорение, единицы измерения. Скорость при прямолинейном равноускоренном движении.	1.1-1.2; 2.1.1- 2.1.2; 2.2; 2.4; 2.5.3; 2.6	Знать уравнения зависимости скорости от времени при прямолинейном равнопеременном движении. Уметь читать и анализировать графики зависимости скорости от времени, уметь составлять уравнения по приведенным графикам.	§9,10
7	22.09	Равномерное движение точки по окружности	1.1.3- 1.1.41.1.6	Равномерное движение точки по окружности.	1.1-1.2; 2.1.1- 2.1.2; 2.2; 2.4;	Уметь решать задачи на определение скорости тела и	§ 15

8	27.09	Кинематика абсолютно	1.1.1-1.1.8	Движение тел. Абсолютно	2.5.3; 2.6	его координаты в любой момент времени по заданным начальным условиям. Знать/понимать смысл	§ 16
0	27.09	твёрдого тела.	1.1.1-1.1.0	твердое тело. Поступательное движение тел. Материальная точка	2.1.2; 2.2; 2.4; 2.5.3; 2.6	физических понятий: механическое движение, материальная точка, поступательное движение.	g 10
9	29.09	Решение задач по теме «Кинематика».	1.1.1-1.1.8	Путь, перемещение, координата при равномерном и равноускоренном движении.	1.1-1.2; 2.1.1- 2.1.2; 2.2; 2.4; 2.5.3; 2.6	Уметь решать задачи на определение скорости тела и его координаты в любой момент времени по заданным начальным условиям.	
10	4.10	Контрольная работа № 1 по теме "Кинематика".	1.1.1-1.1.8	Путь, перемещение, координата при равномерном и равноускоренном движении.	1.1-1.2; 2.1.1- 2.1.2; 2.2; 2.4; 2.5.3; 2.6	Уметь применять полученные знания при решении задач.	
		Динамика (8 ч)					
		Глава 2. Законы механики Ньютона.					
11	6.10	Основное утверждение механики. Сила. Масса. Единицы массы.	1.2.1	Основное утверждение механики. Сила. Масса. Единицы массы.	1.1, 1.3, 2.5.2, 3.1	Знать/понимать смысл понятий «инерциальная и неинерциальная система отсчета». Знать/понимать смысл I закона Ньютона, границы его применимости: уметь применять I закон Ньютона к объяснению	§ 18,19

						явлений и процессов в природе и технике.	
12	11.10	Первый закон Ньютона.	1.2.1	Что изучает динамика. Взаимодействие тел. История открытия I закона Ньютона. Закон инерции. Выбор системы отсчёта. Инерциальная система отсчета.	1.1, 1.3, 2.5.2, 3.1	Знать/понимать смысл понятий «инерциальная и неинерциальная система отсчета». Знать/понимать смысл I закона Ньютона, границы его применимости: уметь применять I закон Ньютона к объяснению явлений и процессов в природе и технике.	§ 20
13	13.10	Второй закон Ньютона.	1.2.4	Зависимость ускорения от действующей силы. Масса тела. II закон Ньютона. Принцип суперпозиции сил. Примеры применения II закона Ньютона.	1.1 1.3 2.5.2	Знать / понимать смысл понятий «взаимодействие», «инертность», «инерция». Знать / понимать смысл величин «сила», «ускорение». Уметь иллюстрировать точки приложения сил, их направление.	§ 21
14	18.10	Третий закон Ньютона	1.2.5	III закон Ньютона. Свойства тел, связанных третьим законом. Примеры проявления III закона в природе.	1.1 1.3 2.5.2	Знать/понимать смысл законов Ньютона, уметь применять их для объяснения механических явлений и процессов. Уметь находить равнодействующую нескольких сил. Приводить примеры опытов, иллюстрирующих границы применимости законов Ньютона.	§ 24
15	20.10	Геоцентрическая	1.2.1	Выбор системы отсчёта.	1.1	Знать/понимать смысл	§ 25

		Глава 3. Силы в механике.		Инерциальная система отсчёта.	1.3	понятий «гравитационные силы», «всемирное тяготение», «сила тяжести»; смысл величины «ускорение свободного падения». Уметь объяснять природу взаимодействия.	
16	25.10	Силы в природе. Сила тяжести и сила всемирного тяготения.	1.2.5; 1.2.7;1.2.9	Закон всемирного тяготения. Гравитационная постоянная. Ускорение свободного падения, его зависимость от географической широты.	1.1, 1.3, 2.1.1- 2.1.2, 2.2, 2.6	Знать историю открытия закона всемирного тяготения. Знать/понимать смысл величин «постоянная всемирного тяготения», «ускорение свободного падения». Знать/ понимать формулу для вычисления ускорения свободного падения на разных планетах и на разной высоте над поверхностью планеты.	§ 27, 28
17	27.10	Вес. Невесомость.	1.1.8 1.2.9 -1.2.11	Все тела. Чем отличается вес от силы тяжести? Невесомость. Перегрузки.	1.1, 1.2, 1.3; 2.1.1, 2.1.2, 2.3, 2.6	Знать / понимать смысл физической величины «сила тяжести». Знать / понимать смысл физической величины «вес тела» и физических явлений невесомости и перегрузок.	§ 33
18	8.11	Силы упругости. Силы трения.	1.2.12- 1.2.13	Электромагнитная природа сил упругости и трения. Сила упругости. Закон Гука. Сила трения. Трение покоя, трение движения.	1.1, 1.2, 1.3, 2.1.2, 2.3, 2.4, 2.5.2, 2.5.3, 2.6	Знать/понимать смысл понятий «упругость»,	§ 34, 36

		Законы сохранения в механике. (7 ч)		Коэффициент трения.		Гука, законы трения. Уметь описывать и объяснять устройство и принцип действия динамометра, уметь опытным путем определять жесткость пружин и коэффициент трения.	
		Глава 4. Закон сохранения импульса.					
19	10.11	Импульс материальной точки. Закон сохранения импульса.	1.4.1-1.4.3	Передача движения от одного тела другому при взаимодействии. Импульс тела, импульс силы. Закон сохранения импульса.	1.1, 1.2, 1.3, 2.3, 2.4, 2.6	Знать/понимать смысл величин «импульс тела», «импульс силы»; уметь вычислять изменение импульса тела в случае прямолинейного движения. Уметь вычислять изменение импульса тела при ударе о поверхность. Знать/понимать смысл закона сохранения импульса.	§ 38
		Глава 5. Закон сохранения энергии.					
20	15.11	Механическая работа и мощность силы	1.4.4-1.4.8	Что такое механическая работа? Работа силы, направленной вдоль перемещения и под углом к	1.1-1.3; 2.6	Знать/понимать смысл физических величин «работа», «механическая энергия».	§ 40

				перемещению тела. Мощ- ность. Выражение мощности через силу и скорость.		Уметь вычислять работу, потенциальную и кинетическую энергию тела.	
21	17.11	Энергия. Кинетическая энергия.	1.4.9	Связь между работой и энергией, потенциальная и кинетическая энергии. Закон сохранения энергии.	1.1-1.3; 2.3, 2.6	Знать/понимать смысл понятия энергии, виды энергий и закона сохранения энергии. Знать границы применимости закона сохранения энергии.	§ 41
22	22.11	Работа силы тяжести и силы упругости. Консервативные силы.	1.4.4-1.4.8	Что такое механическая работа? Работа силы, направленной вдоль перемещения и под углом к перемещению тела. Мощность. Выражение мощности через силу и скорость.	1.1-1.3; 2.3, 2.6	Знать/понимать смысл физических величин «работа», «механическая энергия». Уметь вычислять работу, потенциальную и кинетическую энергию тела.	§ 43
23	24.11	Потенциальная энергия. Закон сохранения энергии в механике.	1.4.9	Связь между работой и энергией, потенциальная и кинетическая энергии. Закон сохранения энергии.	1.1-1.3; 2.3, 2.6	Знать/понимать смысл физических величин «работа», «механическая энергия». Уметь вычислять работу, потенциальную и кинетическую энергию тела.	§ 44, 45
		Статика					
		Глава 7. Равновесие абсолютно твёрдых тел.					
24	29.11	Равновесие тел.	1.4.1-1.4.9	Равновесие тел	2.6	Знать/понимать смысл законов динамики, всемирного тяготения, законов сохранения. Знать	§ 51

						вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие механики, уметь описывать и объяснять движение небесных тел и ИСЗ.	
25	1.12	Контрольная работа № 2. "Динамика. Законы сохранения в механике".	1.2.11.2.14 1.4.1-1.4.9	Связь между работой и энергией, потенциальная и кинетическая энергии. Закон сохранения энергии.	2.6	Уметь применять полученные знания и умения при решении задач.	
		молекулярная физика. Тепловые явления. (20 часов)		очкон сохранения эпергии.			
		Глава 8. Основы молекулярно- кинетической теории.					
26	6.12	Основные положения МКТ. Размеры молекул.	2.1.1-2.1.4	Основные положения МКТ. Опытные подтверждения МКТ. Основная задача МКТ.	1.1; 1.3; 2.1.2; 2.2; 2.5.1; 2.5.2	«молекула», «диффузия», «межмолекулярные силы». Знать/понимать основные положения МКТ и их опытное обоснование; уметь объяснять физические явления на основе представлений о строении вещества.	§ 53
27	8.12	Броуновское движение	2.1.1- 2.1.4	Броуновское движение.	1.2; 2.1.2; 2.5.2	Уметь решать задачи на определение числа молекул, количества вещества, массы вещества и массы одной	§ 55

						молекулы.	
28	13.12	Силы взаимодействия молекул. Строение газообразных, жидких и твердых тел Глава 9. Молекулярно-кинетическая теория	2.1.1- 2.1.5	Оценка размеров молекул, количество вещества, относительная молекулярная масса, молярная масса, число Авогадро.	1.2; 2.1.2; 2.5.2	Знать/понимать строение и свойства газов, жидкостей и твердых тел. Уметь объяснять свойства газов, жидкостей, твердых тел на основе их молекулярного строения.	§ 56
		идеального газа.					
29	15.12	Основное уравнение молекулярно- кинетической теории газов.	2.1.6; 2.1.7	Идеальный газ. Основное уравнение МКТ. Связь давления со средней кинетической энергией молекул.	1.1-1.3; 2.1.1- 2.1.2; 2.5.1- 2.5.2	Уметь описывать основные черты модели «идеальный газ»; уметь объяснять давление, создаваемое газом. Знать основное уравнение МКТ. Уметь объяснять зависимость давления газа от массы, концентрации и скорости движения молекул. Знать/понимать смысл понятия «давление газа»; его зависимость от микропараметров.	§ 57
30	20.12	Температура и тепловое равновесие. Определение температуры. Энергия теплового движения молекул.	2.1.6; 2.1.7	Идеальный газ. Основное уравнение МКТ. Связь давления со средней кинетической энергией молекул.	1.1-1.3; 2.1.1- 2.1.2; 2.5.1- 2.5.2	Уметь описывать основные черты модели «идеальный газ»; уметь объяснять давление, создаваемое газом. Знать основное уравнение МКТ. Уметь объяснять зависимость давления газа от массы, концентрации и	§ 59, § 60

		Глава 10. Уравнение состояния идеального газа. Газовые законы.				скорости движения молекул. Знать/понимать смысл понятия «давление газа»; его зависимость от микропараметров.	
31	22.12	Уравнение состояния идеального газа.	2.1.6; 2.1.7	Идеальный газ. Основное уравнение МКТ. Связь давления со средней кинетической энергией молекул.	1.1-1.3; 2.1.1- 2.1.2; 2.5.1- 2.5.2	Уметь описывать основные черты модели «идеальный газ»; уметь объяснять давление, создаваемое газом. Знать основное уравнение МКТ. Уметь объяснять зависимость давления газа от массы, концентрации и скорости движения молекул. Знать/понимать смысл понятия «давление газа»; его зависимость от микропараметров.	§ 63
32	27.12	Газовые законы.	2.1.11-2.1.12	Уравнение состояния газа. Уравнение Менделеева - Клапейрона. Закон Авогадро. Изопроцессы: изобарный, изохорный, изотермический.	1.1 -1.3; 2.1.2; 2.3; 2.4;	Знать уравнение состояния идеального газа. Знать/понимать зависимость между макроскопическими параметрами (р, V, T), характеризующими состояние газа. Знать/понимать смысл законов Бойля — Мариотта, Гей-Люссака и Шарля.	§ 65
33	12.01	Газовые законы.	2.1.11-2.1.12	Уравнение Менделеева - Клапейрона. Изобарный	2.2; 2.5.3; 2.6	Знать уравнение состояния идеального газа.	

34	17.01	Решение задач Глава 11. Взаимные превращения	2.1.11-2.1.12	процесс. Уравнение состояния газа. Уравнение Менделеева - Клапейрона. Закон Авогадро. Изопроцессы: изобарный, изохорный, изотермический.	1.1 -1.3; 2.1.2; 2.3; 2.4;	Знать/понимать смысл закона Гей-Люссака. Уметь выполнять прямые измерения длины, температуры, представлять результаты измерений с учетом их погрешностей. Знать уравнение состояния идеального газа. Знать/понимать зависимость между макроскопическими параметрами (р, V, T), характеризующими состояние газа. Знать/понимать смысл законов Бойля — Мариотта, Гей-Люссака и Шарля.	
35	19.01	жидкостей и газов. Насыщенный пар. Давление насыщенного	2.1.13 2.1.15 2.1.17	Агрегатные состояния и фазовые переходы. Испарение и	1.1-1.2; 2.1.1- 2.1.2; 2.3	Знать/понимать смысл понятий «кипение»,	§ 68-69
		пара.		конденсация. Насыщенный и ненасыщенный пар. Кипение. Зависимость температуры кипения от давления.		«испарение», «парообразование», «насыщенный пар». Уметь описывать и объяснять процессы испарения, кипения и конденсации. Уметь объяснять зависимость температуры кипения от давления.	
36	24.01	Влажность воздуха.	2.1.14 2.1.17	Парциальное давление. Абсолютная и	1.1-1.2; 2.3; 2.5.3;	Знать/понимать смысл понятий «относительная	§ 70

		Глава 12. Твёрдые тела.		относительная влажность воздуха. Зависимость влажности от температуры, способы определения влажности.	2.6; 3.1	влажность», «парциальное давление». Уметь измерять относительную влажность воздуха. Знать/понимать устройство и принцип действия гигрометра и психрометра.	
37	26.01	Кристаллические и аморфные тела.	2.1.16 2.1.17	Кристаллические тела. Анизотропия. Аморфные тела. Плавление и отвердевание.	1.1 -1.3	Знать/понимать свойства кристаллических и аморфных тел. Знать/понимать различие строения и свойств кристаллических и аморфных тел.	§ 72
		Глава 13. Основы термодинамики					
38	31.01	Внутренняя энергия.	2.2.1 2.2.5	Внутренняя энергия. Способы измерения внутренней энергии. Внутренняя энер-гия идеального га-за. Вычисление Ра-боты при изобар-ном процессе. Геометрическое толкование работы. Физический смысл молярной газовой	1.1-1.2; 2.3; 2.5.3; 2.6	Знать/понимать смысл величины «внутренняя энергия». Знать формулу для вычисления внутренней энергии. Знать/понимать смысл понятий «термодина-мическая система». Уметь вычислять работу газа при изобарном расширении/сжатии.	§ 73

				постоянной.		Знать графический способ	
						вычисления работы газа.	
39	2.02	Работа в термодинамике	2.2.1	Вычисление Ра-боты при	1.1-1.2; 2.3;	Уметь вычислять работу газа	§ 74
			2.2.5	изобар-ном процессе.	2.5.3; 2.6	при изобарном	
				Геометрическое		расширении/сжатии.	
				толкование работы.		Знать графический способ	
				Физический смысл		вычисления работы газа.	
				молярной газовой			
				постоянной.			
40	7.02	Количество теплоты.	2.2.2-	Количество теплоты.	1.1-1.3;	Знать/понимать смысл	§ 76
		Уравнение теплового	2.2.4	Удельная теплоемкость.	2.1.1; 2.3,	понятий «количество	
		баланса.	2.2.6		2.4, 2.5.2	теплоты», «удельная	
						теплоемкость».	
41	9.02	Первый закон	2.2.7	Закон сохранения энергии,	1.1-1.3;	Знать/понимать смысл	§ 78
		термодинамики.		первый закон	2.1.1; 2.3,	первого закона	
				термодинамики.	2.4, 2.5.2, 2.6	термодинамики. Уметь	
						решать задачи с вычислением	
						количества теплоты, работы и	
						изменения внутренней	
						энергии газа.	
						Знать/понимать	
						формулировку первого закона	
						термодинамики для	
						изопроцессов.	
42	14.02	Второй закон	2.2.8	Примеры необратимых	1.1-1.3;	Знать/понимать смысл	§ 81
		термодинамики.		процессов. Понятие	2.1.1; 2.3,	понятий «обратимые и	
				необратимого процесса.	2.4, 2.5.2, 2.6	необратимые процессы»;	
				Второй закон термо-		смысл второго закона	
				динамики. Границы		термодинамики.	
				применимости второго		Уметь приводить примеры	
				закона термодинамики.		действия второго закона	
						термодинамики.	
43	16.02	Принцип действия и	2.2.9	Принцип действия	1.1-1.3, 2.3,	Знать/понимать устройство	§ 82

		КПД тепловых двигателей.	2.2. 10 2.2. 11	тепловых двигателей. Роль холодильника. КПД теплового двигателя. Максимальное значение КПД тепловых двигателей.	3.1, 3.2	и принцип действия теплового двигателя, формулу для вычисления КПД. Знать/понимать основные виды тепловых двигателей: ДВС, паровая и газовая турбины, реактивный двигатель.	
44	21.02	Решение задач.	2.2.9 2.2. 10 2.2. 11	Принцип действия тепловых двигателей. Роль холодильника. КПД теплового двигателя. Максимальное значение КПД тепловых двигателей.	2.6	Знать / понимать основ-ные положения МКТ, уметь объяснять свойства газов, жидкостей и твердых тел на основе представлений о строении вещества. Знать и уметь использовать при решении задач законы Бойля-Мариотта, Гей-Люссака, Шарля, уравнение состояния идеального газа.	§ 73-§ 82
45	28.02	Контрольная работа № 3. «Молекулярная физика. Основы термодинамики».	2.2.9 2.2. 10 2.2. 11	Принцип действия тепловых двигателей. Роль холодильника. КПД теплового двигателя. Максимальное значение КПД тепловых двигателей.	2.6	Знать/понимать первый и второй законы термодинамики; уметь вычислять работу газа, количество теплоты, изменение внутренней энергии, КПД тепловых двигателей, относительную влажность воздуха. Знать/понимать строение и свойства газов, жидкостей и твердых тел, уметь объяснять физические явления и	

		Основы электродинамики (22 часа)				процессы с применением основных положений МКТ.	
		Глава 14. Электростатика					
46	2.03	Электрический заряд и элементарные частицы. Закон сохранения заряда.	3.1. 12 3.1. 13.	Электродинамика. Электростатика. Электрический заряд, два знака зарядов. Элементарный заряд. Электризация тел и ее применение в технике.	1.1, 1.2, 2.1.1-2.1.2, 2.3	Знать смысл закона сохранения заряда. Знать/понимать физический смысл закона Кулона и границы его применимости, уметь вычислять силу кулоновского взаимодействия.	§ 84
47	7.03	Закон Кулона. Единица электрического заряда.	3.1. 12 3.1. 13	Замкнутая система. Закон сохранения электрического заря-да. Опыты Кулона. Взаимодействие электрических заря-дов. Закон Кулона — основной закон электростатики. Единица электрического заряда.	1.1, 1.2, 2.1.1-2.1.2, 2.3	Знать и уметь применять при решении задач закон сохранения электрического заряда, закон Кулона.	§ 85
48	9.03	Электрическое поле. Напряженность электрического поля. Силовые линии.	3.1. 12 3.1. 13	Электрическое поле. Основные свойства электрического поля. Напряженность электрического поля. Принцип суперпозиции полей.	1.1, 1.2, 2.1.1-2.1.2, 2.3	Знать/ понимать смысл понятий: «материя», «вещество», «поле». Знать/понимать смысл величины «напряженность», уметь определять величину и направление напряжен-ности электрического поля точечного заряда.	§ 88-89

49	14.03	Поле точечного заряда и заряженного шара. Принцип суперпозиции полей.	3.1. 12 3.1. 13	Электрическое поле. Основные свойства электрического поля. Напряженность электрического поля. Принцип суперпозиции полей.	1.1, 1.2, 2.1.1-2.1.2, 2.3	Уметь применять принцип суперпозиции электрических полей для расчета напряженности. Знать/ понимать смысл понятий: «материя», «вещество», «поле». Знать/понимать смысл величины «напряженность», уметь определять величину и направление напряжен-ности электрического поля точечного заряда. Уметь применять принцип суперпозиции электрических полей для расчета напряженности.	§ 90
50	16.03	Потенциальная энергия заряженного тела в однородном электростатическом поле.	3.1. 12 3.1. 13	Работа при переме-щении заряда в од-нородном электро-статическом поле. Потенциальная энергия поля.	1.1, 1.2, 2.1.1-2.1.2, 2.3	Знать физический смысл энергетической характеристики электростатического поля.	§ 93
51	28.03	Потенциал электростатического поля и разность потенциалов.	3.1. 12 3.1. 13	Поля. Потенциал поля. Потенциал. Эквипотенциальная поверхность. Разность потенци-алов. Связь между напряженностью и разностью потенциалов.	1.1, 1.2, 2.1.1-2.1.2, 2.3	Знать/понимать смысл физических величин «потенциал», «работа электрического поля»; уметь вычислять работу поля и потенциал поля точечного заряда.	§ 94
52	30.03	Связь между напряженностью электростатического поля и	3.1. 12 3.1.	Потенциал поля. Потенциал. Эквипотенциальная	1.1, 1.2, 2.1.1-2.1.2, 2.3	Знать/понимать смысл физических величин «потенциал», «работа	§ 95

		разностью потенциалов. Эквипотенциальные поверхности.	13	поверхность. Разность потенци-алов. Связь между напряженностью и разностью потенциалов.		электрического поля»; уметь вычислять работу поля и потенциал поля точечного заряда.	
53	4.04	Электроёмкость. Единицы электроёмкости. Конденсатор. Энергия зараженного конденсатора. Применение конденсаторов.	3.1. 12 3.1. 13	Электрическая емкость проводника. Конденсатор. Виды конденсаторов. Емкость плоского конденсатора. Энергия заряженного конденсатора. Применение конденсаторов.	1.1, 1.2, 2.1.1-2.1.2, 2.3	Знать/понимать смысл величины «электрическая емкость». Уметь вычислять емкость плоского конденсатора.	§ 97-98
		Глава 15 Законы постоянного тока.					
54	6.04	Электрический ток. Сила тока.	3.2.1- 3.2.10	Электрический ток. Условия существования электрического тока. Сила тока. Действие тока.	1.1-1.3, 2.5.2, 2.6	Знать/понимать смысл понятий «электрический ток», «источник тока». Знать условия существования электрического тока; знать/понимать смысл величин «сила тока», «напряжение».	§ 100
55	11.04	Закон Ома для участка цепи. Сопротивление.	3.2.1- 3.2.10	Сопротивление. Закон Ома для участка цепи. Единица сопротивления, удельное сопротивление.	1.1-1.3, 2.5.2, 2.6	Знать/понимать смысл закона Ома для участка цепи, уметь определять сопротивление проводников.	§ 101
56	13.04	Электрические цепи. Последовательное и	3.2.1- 3.2.10	Последовательное и параллельное соединение	1.1-1.3, 2.5.2, 2.6	Знать формулу зависимости сопротивления проводника от	§ 102

		параллельное соединения проводников.		проводников.		его геометрических размеров и рода вещества, из которого он изготовлен. Знать закономерности в	
						цепях с последовательным и	
						параллельным соединением	
						проводников.	
57	18.04	Работа и мощность	3.2.1-	Работа тока. Закон Джоуля	1.1-1.3,	Знать/понимать смысл	§ 104
		постоянного тока.	3.2.10	– Ленца. Мощность тока.	2.5.2, 2.6	понятий «мощность тока»,	
						«работа тока». Знать и уметь	
						применять при решении задач	
						формул для вычисления	
						работы и мощности	
70	20.04	0	2.2.1	77	1110	электрического тока.	0.105.105
58	20.04	Электродвижущая сила.	3.2.1-	Источник тока. Сторонние	1.1-1.3,	Уметь измерять ЭДС и	§ 105-106
		Закон Ома для полной	3.2.10	силы. Природа сторонних	2.5.2, 2.6	внутреннее сопротивление	
		цепи.		сил. ЭДС. Закон Ома для		источника тока, знать	
				полной цепи.		формулировку закона Ома для	
						полной цепи, планировать	
						эксперимент и выполнять измерения и вычисления.	
59	25.04	Решение задач.	3.2.1-	Расчет электрических	1.1-1.3,	Уметь решать задачи с при-	§ 100-
	23.04	т сшение задач.	3.2.10	цепей.	2.5.2, 2.6	менением закона Ома для	§ 100- § 105
			3.2.10	ценей.	2.3.2, 2.0	участка цепи и полной цепи;	y 103
						уметь определять работу и	
						мощность электрического тока	
						при параллельном и	
						последовательном соединении	
						проводников.	
60	27.04	Контрольная работа	3.2.1-	Расчет электрических	1.1-1.3,	Уметь решать задачи с при-	
		№ 4. «Электростатика.	3.2.10	цепей	2.5.2, 2.6	менением закона Ома для	
		постоянного тока».				участка цепи и полной цепи;	
						уметь определять работу и	

		Глава 16. Электрический ток в различных				мощность электрического тока при параллельном и последовательном соединении проводников.	
		средах					
61	2.05	Электрическая проводимость различных веществ. Зависимость сопротивления проводника от температуры	3.1.10 3.1.11 3.2.11	Проводники электрического тока. Природа электрического тока в металлах.	1.1, 2.1.1, 2.1.2, 2.3	Уметь объяснять природу электрического тока в металлах, знать/ понимать основы электронной теории, уметь объяснять причину увеличения сопротивления металлов с ростом температуры. Знать /понимать значение сверхпроводников в современных технологиях.	§ 108
62	4.05	Зависимость сопротивления проводника от температуры. Сверхпроводимость.	3.1.10 3.1.11 3.2.11	Зависимость сопротивления металлов от температуры. Сверхпроводимость.	1.1, 2.1.1, 2.1.2, 2.3	Уметь описывать и объяснять условия и процесс протекания электрического разряда в полупроводниках.	§ 109
63	11.05	Электрический ток в полупроводниках. Собственная и примесная проводимости.	3.1.10 3.1.11 3.2.11	Полупроводники, их строение. Электронная и дырочная проводимость.	1.1, 2.1.1, 2.1.2, 2.3	Знать /понимать законы Фарадея, процесс электролиза и его техническое применение.	§ 110 § 112
64	16.05	Собственная и примесная		1 1	1.1, 2.1.1,	и его техническое	

		вакууме. Электронно-	3.1.11	Односторонняя	2.1.2, 2.3	условия и процесс протекания	
		лучевая трубка.	3.2.11	проводимость. Диод.		электрического разряда в	
				Электронно-лучевая трубка.		вакууме.	
65	18.05	Электрический ток в	3.1.10	Растворы и расплавы	1.1, 2.1.1,	Знать /понимать законы	§ 113
		жидкостях. Закон	3.1.11	электролитов. Электролиз.	2.1.2, 2.3	Фарадея, процесс электролиза	
		электролиза.	3.2.11	Закон Фарадея.		и его техническое	
						применение.	
66	23.05	Электрический ток в газах. Несамостоятельный и самостоятельный	3.1.10 3.1.11 3.2.11	Электрический разряд в газе. Ионизация газа. Проводимость газов.	1.1, 2.1.1, 2.1.2, 2.3	Уметь описывать и объяснять условия и процесс протекания электрического разряда в	§ 114
		разряды.	3. 2 .11	Несамостоятельный разряд. Виды самостоятельного		газах.	
		-	2.1.10	электрического разряда.	11011		
67		Решение задач	3.1.10	Растворы и расплавы	1.1, 2.1.1,	Использовать знания об	
			3.1.11	электролитов. Электролиз.	2.1.2, 2.3	электрическом токе в	
			3.2.11	Закон Фарадея.		различных средах в	
						повседневной жизни для	
						обеспечения безопасности	
						при обращении с приборами и	
						техническими устройствами,	
						для сохранения здоровья и	
						соблюдения норм	
						экологического поведения в окружающей среде	
68		Итоговый урок.				окружающей среде	

Учебно-методический комплект и дополнительная литература

- 1) Мякишев Г.Я. Физика: учеб. для 11 кл. общеобразоват. учреждений / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский М.: Просвещение, 2019
- 2) Физика: ежемесячный научно-методический журнал издательства «Первое сентября»
- 3) Интернет-ресурсы: РЭШ (https://resh.edu.ru/), электронные образовательные ресурсы из единой коллекции цифровых образовательных ресурсов (http://school-collection.edu.ru/), каталога Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/): информационные, электронные упражнения, мультимедиа ресурсы, электронные тесты

Основное содержание (68 часов)

Тема	Количество часов	Контрольные работы	Лабораторные работы
ЭЛЕКТРОДИНАМИКА (продолжение)	9	1	2
Магнитное поле	3	-	1
Электромагнитная индукция	6		1
КОЛЕБАНИЯ И ВОЛНЫ	18	1	-
Электромагнитные колебания	10	-	-
Производство, передача и использование электрической энергии	4	-	-
Электромагнитные волны	4		-

ОПТИКА	17	1	2
Световые волны	8	-	1
Элементы теории относительности	5	-	-
Излучение и спектры	4		1
КВАНТОВАЯ ФИЗИКА	14	1	-
Световые кванты	2	-	-
Атомная физика	3	-	-
Физика атомного ядра. Элементарные частицы	8		-
Значение физики для развития мира и развития производительных сил общества	1	-	-
ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ	12	-	
ИТОГО	68	4	4

Ко	Контрольные работы						
№	Тема						
1	Магнитное поле. Электромагнитная индукция						
2	Электромагнитные колебания и						

Лабораторные работы					
№	Тема				
1	Наблюдение действия магнитного поля на ток				
2	Изучение явления электромагнитной индукции				

	волны
3	Оптика. Световые волны
4	Световые кванты.

3	Измерение показателя преломления стекла
4	Наблюдение сплошного и линейчатого спектров

КАЛЕНДАРНО – ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 11 КЛАСС (68 часов, 2 часа в неделю)

№ недел и/уро ка	Дата	Тема урока	Код элемента содержания (КЭС)	Элемент содержания	Код требований к уровню подготовки (КПУ)	Требования к уровню подготовки	Домашнее задание (примерное)
РАЗДЕ	ЕЛ 1. ОС	НОВЫ ЭЛЕКТРОДИНАМ	`				
1		Вектор и модуль	3.3.1	Электрический ток, взаимодействие	1,2.1 –	Знать смысл физических величин:	п.1-п.3

	магнитной индукции	3.3.2	токов, магнитное поле. Основные свойства магнитного поля. Вектор магнитной индукции. Правило буравчика.	2.4,3	магнитные силы, магнитное поле. Знать и уметь применять правило буравчика и правило левой руки	
3	Сила Лоренца Магнитные свойства вещества	3.3.1	Сила Ампера F=IBlsinα. Правило левой руки. Применение закона Ампера. Наблюдение действия магнитного поля на ток		Знать правило «буравчика», вектор магнитной индукции. Применять данное правило для определения направлений линий магнитного поля и направления тока в проводнике. Знать формулы нахождения модуля вектора магнитной индукции и силы Ампера. И уметь их применять при решении задач. Понимать смысл закона Ампера, смысл силы Ампера как физической величины. Применять правило «левой руки» для	п. 6 упр.1(3, 4)
					определения направления действия силы Ампера (линий магнитного поля, направления тока в проводнике). Уметь применять полученные знания на практике	
4	Электромагнитная индукция. Магнитный поток. Правило Ленца	3.3.1	Действие магнитного поля на движущийся электрический заряд. Сила Лоренца. Правило «левой руки» для определения направления силы Лоренца. Движение заряженной частицы в однородном	1,2.1 – 2.4,3	Лоренца как физической величины. Применять правило «левой руки» для определения направления действия силы Лоренца (линий магнитного поля, направления скорости движущегося	П.8-10

			магнитном поле. Применение силы Лоренца		электрического заряда)	
5	Закон электромагнитной индукции		Магнитное поле Применение силы Ампера в технике. Решение задач.	1,2.1 – 2.4,3	Знать правила «буравчика», левой руки и формулу закона Ампера. Уметь применять полученные знания при решении задач.	П.11
6	ЭДС индукции в движущихся проводниках	3.4.1	Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции.	1,2.1 – 2.4,3	Знать/понимать явление электромагнитной индукции, описывать и объяснять опыты; понятие «магнитный поток». Знать/понимать законы.	П.13
7	Самоиндукция. Индуктивность.		Заряд, магнитное поле. Сила Лоренца. Действие магнитного поля на движущийся электрический заряд. F=qBvsinα		Знать/понимать явление действия магнитного поля на движение заряженных частиц. Уметь определять величину и направление силы Лоренца.	П.15 упр.2 (4,5)
8	Энергия магнитного поля	3.4.1	Самоиндукция, индуктивность. ЭДС самоиндукции Электромагнитное поле. Энергия магнитного поля.	1,2.1 – 2.4,3	Знать и понимать определение понятий. Уметь применять формулы при решении простейших задач	П.15
9	Контрольная работа				Уметь применять полученные знания и умения при решении задач.	

10	Условия возникновения	3.5.1	Открытие электромагнитных	1,2.1 –	Знать/понимать: Свободные и	П.18-21
	свободных колебаний	,3.5.	колебаний. Свободные и	2.4	вынужденные колебания.	
		4 –	вынужденные электромагнитные			
		3.5.5	колебания.			
11	Гармонические		Открытие электромагнитных	1	Знать/понимать: Свободные и	П 22
	колебания		колебаний. Свободные и		вынужденные колебания.	
			вынужденные электромагнитные			
			колебания.			
12	Фаза колебаний		Открытие электромагнитных	-	Знать/понимать: Свободные и	П 23
			колебаний. Свободные и		вынужденные колебания.	
			вынужденные электромагнитные			
			колебания.			
13	Превращение энергии		Устройство колебательного контура.	1	Знать устройство колебательного	П. 24-26
	при гармонических		Превращение энергии в		контура, характеристики	
	колебаниях.		колебательном контуре.		электромагнитных колебаний.	
			Характеристики электромагнитных		Объяснять превращение энергии при	
			колебаний. Формула Томсона.		электромагнитных колебаниях. Уметь	
			Гармонические колебания.		применять формулу Томсона	
14	Свободные и		Устройство колебательного контура.		Знать устройство колебательного	П.27-28
	вынужденные		Превращение энергии в		контура, характеристики	
			колебательном контуре.		электромагнитных колебаний.	
	электромагнитные		Характеристики электромагнитных		Объяснять превращение энергии при	
	колебания		колебаний. Формула Томсона.		электромагнитных колебаниях. Уметь	
			Гармонические колебания.		применять формулу Томсона	

15	Аналогия между механическими и электромагнитными колебаниями		Устройство колебательного контура. Превращение энергии в колебательном контуре. Характеристики электромагнитных колебаний. Формула Томсона. Гармонические колебания.		Знать устройство колебательного контура, характеристики электромагнитных колебаний. Объяснять превращение энергии при электромагнитных колебаниях. Уметь применять формулу Томсона	П 29
16	Уравнения, описывающие процессы в колебательном контуре		Устройство колебательного контура. Превращение энергии в колебательном контуре. Характеристики электромагнитных колебаний. Формула Томсона. Гармонические колебания.		Знать устройство колебательного контура, характеристики электромагнитных колебаний. Объяснять превращение энергии при электромагнитных колебаниях. Уметь применять формулу Томсона	П30
17	Переменный электрический ток	3.5.1 ,3.5. 4 – 3.5.6	Переменный электрический ток. Получение перемен. тока. Уравнения ЭДС, напряжения и силы переменного тока. Сопротивление в цепи пер тока	1,2.1 – 2.4	Понимать смысл физической величины (переменный ток) Объяснять получение переменного тока и применение. Использовать формулы для решения задач.	П.31
18	Активное сопротивление		Переменный электрический ток. Получение перемен. тока. Уравнения ЭДС, напряжения и силы переменного тока. Сопротивление в цепи пер тока		Понимать смысл физической величины (переменный ток) Объяснять получение переменного тока и применение. Использовать формулы для решения задач.	П32
19	Резонанс в электрической цепи		Переменный электрический ток. Получение перемен. тока. Уравнения ЭДС, напряжения и силы переменного тока. Сопротивление в		Понимать смысл физической величины (переменный ток) Объяснять получение переменного тока и применение. Использовать формулы для решения	П35

			цепи пер тока		задач.	
20	Решение задач					Упр.4(1, 2)
21	Контрольная работа					
22	Генерирование электрической энергии. Трансформаторы	3.5.4	Коэффициент трансформации, принцип действия трансформатора, генератора.	1,2.1 – 2.4	Объяснять устройство и приводить примеры применения трансформатора.	П. 37-38
23	Производство и использование электрической энергии	3.5.4	Основы электродинамики, электромагнитные колебания		Знать определения понятий, формулы. Уметь применять правила и формулы при решении задач	П. 39-41
24	Механические волны		Производство и передача электроэнергии. Типы электростанций. Повышение эффективности использования электроэнергии		Знать/понимать основные принципы производства и передачи электрической энергии	П. 42-47
25	Электромагнитные волны		Типы электростанций. Повышение эффективности использования электроэнергии	_		П. 48-50 упр 5
26	Принципы радиосвязи	3.5.5 3.5.6	Теория Максвелла. Теория дальнодействия и близкодействия. Возникновение и распространение электромагнитного поля. Основные свойства электромагнитных волн.	1,2.1 – 2.4	Знать смысл теории Максвелла. Свойства электромагнитных волн. Уметь объяснять возникновение и распространение электромагнитного поля. Описывать и объяснять основные свойства электромагнитных волн	П.51-52

27	Свойства радиоволн		Изобретение радио Поповым. Принципы радиосвязи		Знать устройство и принцип действия радиоприёмника А.С.Попова. И уметь их описывать	п.53-58
РАЗДЕЛ З	3. ОПТИКА (15 часов)			<u> </u>		<u>.I</u>
28	Скорость света. Закон отражения света.	3.6.1 - 3.6.43 .6.63.	Скорость света, опыт Физо, опыт Рёмера	1,2.1 – 2.4,3	Знать физ. смысл и знать значение скорости света, развитие взглядов на природу света. Уметь объяснить опыты Физо и Ремёра	п.59-60
29	Закон преломления света. Полное отражение	6.83.6	Принцип Гюйгенса. Закон отражения света. Построение изображений в плоском зеркале		Понимать смысл физических законов: принцип Гюйгенса, закон отражения света. Уметь выполнять построение изображений в плоском зеркале.	п.61-62
30	Линза. Построение изображения в линзе.		Показатель преломления, относительный, абсолютный <i>п</i> Оптика. Световые явления.		Понимать смысл закона преломления света. Уметь определять показатель	П.63-64
31	Формула тонкой линзы. Решение задач		Оптика. Световые явления.		преломления, выполнять построение изображений. Уметь определять показатель преломления	п. 65
32	Дисперсия света. Интерференция механических и световых волн	3.6.6- 3.6.9	Виды линз. Формула тонкой линзы. Оптическая сила и фокусное расстояние линзы. Построение изображений в тонкой линзе. Увеличение линзы.	1,2.1 – 2.4,3	Знать основные точки линзы. Применять формулы при решении задач Выполнять построение изображений в линзе Уметь применять полученные знания	п. 66-68

					на практике	
33	Дифракция волн	3.6.12	Дисперсия, опыт Ньютона		Понимать смысл физического явления (дисперсия света). Объяснять образование сплошного спектра при дисперсии.	п. 70-71
34	Дифракционная решетка. Лабораторная работа «Измерение длины световой волны»	3.6.10 3.6.11	Интерференция света. Дифракция света		Понимать смысл физических явлений: Дифракция, интерференция, естественный и поляризованный свет. Уметь объяснять данные явления	п. 72 упр.9
35	Поперечность световых волн. Поляризация света.		Естественный и поляризованный свет. Применение поляризованного света	1,2.1 – 2.4,3 2.6	Понимать смысл физических явлений: естественный и поляризованный свет. Уметь объяснять данные явления	п. 74 упр. 10
36	Контрольная работа			-		
37	Законы электродинамики и принцип относительности	4.1	Законы электродинамики и принцип относительности. Постулаты теории относительности, относительность одновременности	1,2.1 – 2.4	Знать Постулаты теории относительности, относительность одновременности.	П.75,76, 77
38	Относительность одновременности. Следствия из постулатов СТО	4.2	Релятивистская динамика. Релят.закон сложения скоростей. Релят.характер импульса.	1,2.1 – 2.4	Понимать смысл понятия «релятивистская динамика». Знать зависимость массы от скорости.	П. 78,79
39	Зависимость массы от скорости. Релятивистская	4.3	E=mc ² . Энергия покоя		Знать закон взаимодействия массы и	упр.11

	динамика.				энергии	краткие итоги
						главы
40	Виды излучений. Спектры.	3.5.6	Виды излучений. Инфракрасное, ультрафиолетовое и рентгеновское излучение	1,2.1 – 2.4	Знать виды излучений и источников света. Знать особенности видов излучений. Иметь представление о шкале электромагнитных волн. Объяснять шкалу электромагнитных волн	п. 80-81
41	Виды спектров. Спектральный анализ		Распределение энергии в спектре. Спектроскоп. Виды спектров.		Знать распределение энергии в спектре. Три типа спектров. Значение спектрального анализа	п. 82-83
42	Инфракрасное, ультрафиолетовое и рентгеновское излучения		Инфракрасное и ультрафиолетовое излучения. Рентгеновские лучи. Виды электромагнитных излучений.		Знать смысл физических понятий «инфракрасное излучение» и «ультрафиолетовое излучение». Знать рентгеновские лучи. Приводить примеры применения в технике различных видов электромагнитных излучений.	п. 84, п. 85,п.86
	Л 4 Атомная и ядерная ФИЗИКА (Световые кванты (2 часа)	14 часо	ов)			
43	Квантовая физика. Фотоэффект.	5.1.1	Квант, E=hv, постоянная Планка Фотоэффект, законы фотоэффекта, формула Эйнштейна, красная	1,2.1 – 2.4 –	Знать/понимать смысл понятий: фотоэффект, фотон. Знать и уметь	п. 88

		5.1.4	граница. Границы применимости законов.	2.6	применять уравнение Эйнштейна для фотоэффекта	(4,5)
44	Фотоны.	5.1.5	Фотон. Гипотеза Де Бройля. Применение фотоэлементов. Давление света.	1,2.1 – 2.6	Знать величины, характеризующие свойства фотона (масса, скорость, энергия, импульс). Устройство и принцип действия фотоэлементов	п.89 упр. 12(7)
2. ATO	омная физика (3 часа)					
45	Строение атома. Опыты Резерфорда Квантовые постулаты	5.2.1 - 5.2.3 5.3.1 5.2.1	Модель Томсона, планетарная модель атома. Строение атома по Резерфорду. Постулаты Бора.	1.2.1 – 2.4	Знать модели Томсона и опыт Резерфорда. Понимать смысл физических явлений, показывающих сложное строение атома. Понимать квантовые постулаты Бора.	П. 93
	Бора.	5.2.4	Свойство лазерного излучения. Применение лазеров.	2.4	Иметь понятие о вынужденном индуцированном излучении. Знать свойства лазерного излучения. Уметь применять постулаты Бора для объяснения механизма испускания света атомами.	
47	Лазеры		Свойство лазерного излучения. Применение лазеров.		Понимать квантовые постулаты Бора. Иметь понятие о вынужденном индуцированном излучении. Знать свойства лазерного излучения. Уметь применять постулаты Бора для объяснения механизма испускания света	П 96

					атомами.	
48	Контрольная работа					
3. Физ	зика атомного ядра (5 часов)		<u> </u>		<u> </u>	
49	Радиоактивность	5.3.1 - 5.3.3	Физическая природа, свойства и области применения α,β,γ-излучения. Закон радиоактивного распада. Период полураспада. Протонно-нейтронная модель ядра. Ядерные силы.	1.2.1 – 2.4	Знать области применения α,β,γ-излучения. Уметь описывать и объяснять физические явления: радиоактивности, α,β,γ- излучения. Понимать смысл физических понятий: строение атомного ядра. ядерные силы. Приводить примеры строения ядер химических элементов.	П.97-98
50	превращения		Физическая природа, свойства и области применения α,β,γ-излучения. Закон радиоактивного распада. Период полураспада.		 Знать области применения α,β,γ-излучения. Уметь описывать и объяснять физические явления: радиоактивности, α,β,γ- излучения. Понимать смысл физических понятий: строение атомного ядра. ядерные силы. Приводить примеры строения ядер химических элементов. 	П 99-
51	Закон радиоактивного распада. Период	5.3.2	Энергия связи, дефект массы, удельная энергия связи Ядерные реакции. Период полураспада. Закон		Понимать физический смысл «энергии связи ядра», «дефект масс». Решать задачи на составление ядерных реакций,	п. 101 п. 102-

	полураспада	5.3.4	радиоактивного распада.		определение неизвестного элемента реакции. Понимать смысл физического закона радиоактивного распада.	103
52	Ядерные силы. Энергия связи атомных ядер.		Применение ядерной энергетики. Биологическое действие радиоактивных излечений.		Знать влияние радиоактивных излучений на живые организмы, называть способы снижения этого влияния. Приводить примеры использования ядерной энергии в технике	П 104- 105
53	Ядерные реакции. Деление ядер урана. Цепные ядерные реакции.	5.3.6	Ядерные реакции. Деление ядра урана. Цепная ядерная реакция. Ядерный реактор, термоядерные реакции	1.2.1 – 2.4	Решать задачи на составление ядерных реакций, определение неизвестного элемента реакции. Объяснять деление ядра урана, цепную реакцию. Объяснять осуществление управляемой реакции в ядерном реакторе.	п. 106- 109
54	Синтез ядер. Термоядерные реакции	5.2- 5.3	Световые кванты. Физика атома и атомного ядра.	2.6	Уметь применять полученные знания на практике.	п. 110- 113
55	Элементарные частицы		Три этапа в развитии физики элементарных частиц. Открытие позитрона. Античастицы. Открытие нейтрино. Классификация элементарных частиц. Взаимные превращения элементарных частиц. Кварки.		Знать различие трех этапов развития физики элементарных частиц. Иметь представление о всех стабильных элементарных частицах	П. 114- 115

56	Значение физики для объяснения мира и развития производительных сил общества		Фундаментальные взаимодействия. Единая физическая картина мира. Физика и астрономия. Физика и биология. Физика и техника. Энергетика. Создание материалов с заданными свойствами. Автоматизация производства. Физика и информатика. Интернет		Объяснять физическую картину мира. Иметь представление о том, какой решающий вклад вносит современная физика в научно-техническую революцию	п. 127
Повторо	ение (12ч)	I		<u>I</u>		
57	Основы электродинамики	1.1	Траектория, система отсчёта, путь перемещение, скалярная и векторная величины. Ускорение, уравнение движения, графическая зависимость.	1-2	Знать понятия: путь, перемещение, скалярная и векторная величины. Уметь измерять время, расстояние, скорость и строить графики.	Решение заданий на данные формул ы
58	Основы электродинамики	1.2	Явление инерции. Законы Ньютона.		Знать и понимать смысл законов Ньютона. Уметь формулы при решении задач	
59	Основы электродинамики		Закон всемирного тяготения; силы тяжести, упругости, трения		Знать закон всемирного тяготения, понятия: деформация, сила тяжести, упругости, трение, вес тела. Уметь решать простейшие задачи. Уметь привести примеры действия сил и объяснить их проявление.	

60	Колебания и волны	1.4	Импульс. Закон сохранения импульса. Закон сохранения энергии. Работа. Мощность. Энергия.	Объяснять и приводить примеры практич. использования физических законов. Уметь вычислять работу, мощность, энергию, скорость из закона сохранения энергии, объяснять границы применимости законов.
61	Колебания и волны	2.1	Уравнение Менделеева-Клайперона. Изопроцессы.	Знать планетарную модель строения атома, определения изопроцессов. Понимать физический смысл МКТ. Вычислять параметры, характеризующие молекулярную структуру вещества, определять характер изопроцесса по графикам
62	Колебания и волны	2.1.1 3- 2.1.1 7 2.2.1 - 2.2.5	Испарение, конденсация, влажность воздуха. Психрометр. Теплопередача. Количество теплоты	Знать основные понятия. Объяснять преобразования энергии при изменении агрегатного состояния вещества. Работать с психрометром. Вычислять количество теплоты.
63	Оптика	2.2	Броуновское движение. Строение вещества. Процессы передачи тепла. Тепловые двигатели	Приводить примеры и уметь объяснять отличия агрегатных состояний. Знать определение внутренней энергии, способы её изменения. Объяснять

64	Оптика	3.1-3.2	Электрический заряд. Закон кулона. Конденсаторы и их применение. Закон Ома. Последовательное и параллельное соединение проводников.	процессы теплопередач. Объяснять и анализировать КПД теплового двигателя Знать виды зарядов, закон кулона, электроёмкость. Виды конденсаторов. Объяснять электризацию тел, опыт кулона, применение. Знать закон Ома. Виды соединений. Владеть понятиями: электрический ток, сила тока. Уметь пользоваться электрическими приборами	
65	Оптика	3.3-3.5	Повторение. Электростатика. Законы постоянного тока. Решение задач ЕГЭ	Знать понятия: магнитное поле, электромагнитное поле. Электромагнитные волны и их свойства. Владеть правилами: Буравчика, левой руки. Объяснять: закон Ампера, электромагнитной индукции.	Повтори ть основны е законы, выучить формул ы. Решение заданий на данные формул ы из любого сборник

			а контр ьно измер ельны	ерит
			диагн тичес х	
			матер лов Е	
66	Квантовая физика	Повторение. Электромагнитные явления. Решение задач ЕГЭ	Повторение. Законы сохранения в механике. Решение задач ЕГЭ	
67	Квантовая физика	Итоговая контрольная работа. Решение задач ЕГЭ	Повторение. Основы МКТ. Решение задач ЕГЭ	
68	Квантовая физика	Повторение. Силы в природе. Решение задач ЕГЭ	Повторение. Взаимное превращение жидкостей, газов. Решение задач ЕГЭ	

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения физики на базовом уровне ученик должен

знать/понимать

- **смысл понятий:** физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- *смысл физических законов* классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

<u>уметь</u>

- *описывать и объяснять физические явления и свойства тел:* движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- *отпичать* гипотезы от научных теорий; *делать выводы* на основе экспериментальных данных; *приводить примеры, показывающие, что:* наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- *приводить примеры практического использования физических знаний:* законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- *воспринимать и на основе полученных знаний самостоятельно оценивать* информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- ◆ обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радиои телекоммуникационной связи;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- → рационального природопользования и защиты окружающей среды.